Randomized Polynomial Time Protocol for Combinatorial Slepian-Wolf Problem

  • Daniyar Chumbalov
  • Andrei RomashchenkoEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9235)


We consider the following combinatorial version of the Slepian–Wolf coding scheme. Two isolated Senders are given binary strings X and Y respectively; the length of each string is equal to n, and the Hamming distance between the strings is at most \(\alpha n\). The Senders compress their strings and communicate the results to the Receiver. Then the Receiver must reconstruct both strings X and Y. The aim is to minimise the lengths of the transmitted messages.

The theoretical optimum of communication complexity for this scheme (with randomised parties) was found in [6], though effective protocols with optimal lengths of messages remained unknown. We close this gap and present for this communication problem a polynomial time randomised protocol that achieves the optimal communication complexity.


Slepian-Wolf coding Communication complexity Coding theory Randomized encoding Pseudo-random permutations 


  1. 1.
    Slepian, D., Wolf, J.K.: Noiseless coding of correlated information sources. IEEE Trans. Inf. Theory 19, 471–480 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Kaplan, E., Naor, M., Reingold, O.: Derandomized constructions of k-wise (almost) independent permutations. In: Chekuri, C., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.) APPROX 2005 and RANDOM 2005. LNCS, vol. 3624, pp. 354–365. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  3. 3.
    Smith, A.: Scrambling adversarial errors using few random bits, optimal information reconciliation, and better private codes. In: Proceedings of the 18th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 395–404 (2007)Google Scholar
  4. 4.
    Guruswami, V., Smith, A.: Codes for computationally simple channels: explicit constructions with optimal rate. In: Proceedings of the 51st IEEE Symposium on Foundations of Computer Science (FOCS), pp. 723–732 (2010)Google Scholar
  5. 5.
    Chuklin, A.: Effective protocols for low-distance file synchronization (2011). arXiv:1102.4712
  6. 6.
    Chumbalov, D.: Combinatorial version of the Slepian-Wolf coding theorem for binary strings. Siberian Electron. Math. Rep. 10, 656–665 (2013)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Orlitsky, A.: Interactive communication of balanced distributions and of correlated files. SIAM J. Discrete Math. 6, 548–564 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kolmogorov, A.N.: Three approaches to the quantitative definition of information. Prob. Inf. Transm. 1(1), 1–7 (1965)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Hartley, R.V.L.: Transmission of information. Bell Syst. Tech. J. 7(3), 535–563 (1928)CrossRefGoogle Scholar
  10. 10.
    Hammer, D., Romashchenko, A., Shen, A., Vereshchagin, N.: Inequalities for Shannon entropy and Kolmogorov complexity. J. Comput. Syst. Sci. 60(2), 442–464 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Romanshchenko, A., Shen, A., Vereshchagin, N.: Combinatorial interpretation of Kolmogorov complexity. Theoret. Comput. Sci. 271(1–2), 111–123 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Chan, T.H.: A combinatorial approach to information inequalities. Commun. Inf. Syst. 1(3), 1–14 (2001)MathSciNetGoogle Scholar
  13. 13.
    Muchnik, A.: Conditional complexity and codes. Theoret. Comput. Sci. 271(1–2), 97–109 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Csiszar, I., Körner, J.: Information Theory: Coding Theorems for Discrete Memoryless Systems, 2nd edn. Cambridge University Press, Cambridge (2011)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Ecole Polytechnique Federale de Lausanne (EPFL)LausanneSwitzerland
  2. 2.Le Laboratoire d’Informatique, de Robotique et de Microelectronique de Montpellier (LIRMM)MontpellierFrance

Personalised recommendations