Advertisement

Satisfiability Algorithms and Lower Bounds for Boolean Formulas over Finite Bases

  • Ruiwen Chen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9235)

Abstract

We give a #SAT algorithm for boolean formulas over arbitrary finite bases. Let \(B_k\) be the basis composed of all boolean functions on at most k inputs. For \(B_k\)-formulas on n inputs of size cn, our algorithm runs in time \(2^{n(1-\delta _{c,k})}\) for \(\delta _{c,k} = c^{-O(c^2k2^k)}\). We also show the average-case hardness of computing affine extractors using linear-size \(B_k\)-formulas.

We also give improved algorithms and lower bounds for formulas over finite unate bases, i.e., bases of functions which are monotone increasing or decreasing in each of the input variables.

Keywords

Boolean formula Satisfiability algorithm Average-case lower bound Random restriction 

References

  1. 1.
    Andreev, A.E.: On a method of obtaining more than quadratic effective lower bounds for the complexity of \(\pi \)-schemes. Vestnik Moskovskogo Universiteta. Matematika 42(1), 70–73 (1987)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Chen, R., Kabanets, V., Kolokolova, A., Shaltiel, R., Zuckerman, D.: Mining circuit lower bound proofs for meta-algorithms. In: CCC (2014)Google Scholar
  3. 3.
    Chen, R., Kabanets, V., Saurabh, N.: An improved deterministic #SAT algorithm for small De Morgan formulas. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part II. LNCS, vol. 8635, pp. 165–176. Springer, Heidelberg (2014) Google Scholar
  4. 4.
    Chockler, H., Zwick, U.: Which bases admit non-trivial shrinkage of formulae? Comput. Complex. 10(1), 28–40 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Fomin, F., Kratsch, D.: A measure & conquer approach for the analysis of exact algorithms. J. ACM 56(5), 25:1–25:32 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Håstad, J.: The shrinkage exponent of de Morgan formulae is 2. SIAM J. Comput. 27, 48–64 (1998)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Impagliazzo, R., Meka, R., Zuckerman, D.: Pseudorandomness from shrinkage. In: FOCS (2012)Google Scholar
  8. 8.
    Impagliazzo, R., Nisan, N.: The effect of random restrictions on formula size. Random Struct. Algorithms 4(2), 121–134 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Komargodski, I., Raz, R.: Average-case lower bounds for formula size. In: STOC (2013)Google Scholar
  10. 10.
    Komargodski, I., Raz, R., Tal, A.: Improved average-case lower bounds for demorgan formula size. In: FOCS (2013)Google Scholar
  11. 11.
    Li, X.: A new approach to affine extractors and dispersers. In: CCC (2011)Google Scholar
  12. 12.
    Paterson, M., Zwick, U.: Shrinkage of de Morgan formulae under restriction. Random Struct. Algorithms 4(2), 135–150 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Santhanam, R.: Fighting perebor: New and improved algorithms for formula and qbf satisfiability. In: FOCS (2010)Google Scholar
  14. 14.
    Seto, K., Tamaki, S.: A satisfiability algorithm and average-case hardness for formulas over the full binary basis. In: CCC (2012)Google Scholar
  15. 15.
    Subbotovskaya, B.A.: Realizations of linear functions by formulas using and or, not. Soviet Math. Doklady 2, 110–112 (1961)zbMATHGoogle Scholar
  16. 16.
    Williams, R.: Improving exhaustive search implies superpolynomial lower bounds. In: STOC (2010)Google Scholar
  17. 17.
    Williams, R.: Non-uniform ACC circuit lower bounds. In: CCC (2011)Google Scholar
  18. 18.
    Williams, R.: Algorithms for circuits and circuits for algorithms. In: CCC (2014)Google Scholar
  19. 19.
    Yehudayoff, A.: Affine extractors over prime fields. Combinatorica 31(2), 245–256 (2011)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.School of InformaticsUniversity of EdinburghEdinburghUK

Personalised recommendations