Advertisement

Optimal Algorithms and a PTAS for Cost-Aware Scheduling

  • Lin Chen
  • Nicole Megow
  • Roman Rischke
  • Leen Stougie
  • José Verschae
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9235)

Abstract

We consider a natural generalization of classical scheduling problems in which using a time unit for processing a job causes some time-dependent cost which must be paid in addition to the standard scheduling cost. We study the scheduling objectives of minimizing the makespan and the sum of (weighted) completion times. It is not difficult to derive a polynomial-time algorithm for preemptive scheduling to minimize the makespan on unrelated machines. The problem of minimizing the total (weighted) completion time is considerably harder, even on a single machine. We present a polynomial-time algorithm that computes for any given sequence of jobs an optimal schedule, i.e., the optimal set of time-slots to be used for scheduling jobs according to the given sequence. This result is based on dynamic programming using a subtle analysis of the structure of optimal solutions and a potential function argument. With this algorithm, we solve the unweighted problem optimally in polynomial time. Furthermore, we argue that there is a \((4+{\varepsilon })\)-approximation algorithm for the strongly NP-hard problem with individual job weights. For this weighted version, we also give a PTAS based on a dual scheduling approach introduced for scheduling on a machine of varying speed.

References

  1. 1.
    Amazon EC2 Pricing Options. https://aws.amazon.com/ec2/pricing/
  2. 2.
    Albers, S.: Energy-efficient algorithms. Commun. ACM 53(5), 86–96 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bansal, N., Pruhs, K.: The geometry of scheduling. In: Proceedings of the FOCS 2010, pp. 407–414 (2010)Google Scholar
  4. 4.
    Eastman, W.L., Even, S., Isaac, M.: Bounds for the optimal scheduling of n jobs on m processors. Manage. Sci. 11(2), 268–279 (1964)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Epstein, L., Levin, A., Marchetti-Spaccamela, A., Megow, N., Mestre, J., Skutella, M., Stougie, L.: Universal sequencing on an unreliable machine. SIAM J. Comput. 41(3), 565–586 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Höhn, W., Jacobs, T.: On the performance of smith’s rule in single-machine scheduling with nonlinear cost. In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS, vol. 7256, pp. 482–493. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  7. 7.
    Kulkarni, J., Munagala, K.: Algorithms for cost-aware scheduling. In: Erlebach, T., Persiano, G. (eds.) WAOA 2012. LNCS, vol. 7846, pp. 201–214. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  8. 8.
    Lawler, E.L., Labetoulle, J.: On preemptive scheduling of unrelated parallel processors by linear programming. J. ACM 25(4), 612–619 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Lee, C.-Y.: Machine scheduling with availability constraints. In: Leung, J.Y.-T. (eds.) Handbook of Scheduling: Algorithms, Models, and Performance Analysis. Chapter 22. CRC Press (2004)Google Scholar
  10. 10.
    Megow, N., Verschae, J.: Dual techniques for scheduling on a machine with varying speed. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 745–756. Springer, Heidelberg (2013) Google Scholar
  11. 11.
    Wan, G., Qi, X.: Scheduling with variable time slot costs. Nav. Res. Logistics 57, 159–171 (2010)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Wang, G., Sun, H., Chu, C.: Preemptive scheduling with availability constraints to minimize total weighted completion times. Ann. Oper. Res. 133, 183–192 (2005)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Lin Chen
    • 1
  • Nicole Megow
    • 2
  • Roman Rischke
    • 1
  • Leen Stougie
    • 3
  • José Verschae
    • 4
  1. 1.Department of MathematicsTechnische Universität BerlinBerlinGermany
  2. 2.Center for MathematicsTechnische Universität MünchenMunichGermany
  3. 3.Department of Econometrics and Operations ResearchVrije Universiteit Amsterdam and CWIAmsterdamThe Netherlands
  4. 4.Departamento de Matemáticas and Departamento de Ingeniería Industrial y de SistemasPontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations