Advertisement

Near-Optimal Asymmetric Binary Matrix Partitions

  • Fidaa Abed
  • Ioannis Caragiannis
  • Alexandros A. Voudouris
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9235)

Abstract

We study the asymmetric binary matrix partition problem that was recently introduced by Alon et al. (WINE 2013) to model the impact of asymmetric information on the revenue of the seller in take-it-or-leave-it sales. Instances of the problem consist of an \(n \times m\) binary matrix A and a probability distribution over its columns. A partition scheme\(B=(B_1,...,B_n)\) consists of a partition \(B_i\) for each row i of A. The partition \(B_i\) acts as a smoothing operator on row i that distributes the expected value of each partition subset proportionally to all its entries. Given a scheme B that induces a smooth matrix \(A^B\), the partition value is the expected maximum column entry of \(A^B\). The objective is to find a partition scheme such that the resulting partition value is maximized. We present a 9 / 10-approximation algorithm for the case where the probability distribution is uniform and a \((1-1/e)\)-approximation algorithm for non-uniform distributions, significantly improving results of Alon et al. Although our first algorithm is combinatorial (and very simple), the analysis is based on linear programming and duality arguments. In our second result we exploit a nice relation of the problem to submodular welfare maximization.

References

  1. 1.
    Akerlof, G.A.: The market for lemons: quality uncertainty and the market mechanism. Quaterly J. Econ. 84, 488–500 (1970)CrossRefGoogle Scholar
  2. 2.
    Alon, N., Feldman, M., Gamzu, I., Tennenholtz, M.: The asymmetric matrix partition problem. In: Chen, Y., Immorlica, N. (eds.) WINE 2013. LNCS, vol. 8289, pp. 1–14. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  3. 3.
    Athanassopoulos, S., Caragiannis, I., Kaklamanis, C.: Analysis of approximation algorithms for k-set cover using factor-revealing linear programs. Theor. Comput. Sys. 45(3), 555–576 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Athanassopoulos, S., Caragiannis, I., Kaklamanis, C., Kyropoulou, M.: An improved approximation bound for spanning star forest and color saving. In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 90–101. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  5. 5.
    Caragiannis, I.: Wavelength management in WDM rings to maximize the number of connections. SIAM J. Discrete Math. 23(2), 959–978 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Caragiannis, I., Kaklamanis, C., Kyropoulou, M.: Tight approximation bounds for combinatorial frugal coverage algorithms. J. Comb. Optim. 26(2), 292–309 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Crawford, V., Sobel, J.: Strategic information transmission. Econometrica 50, 1431–1451 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cremer, J., McLean, R.P.: Optimal selling strategies under uncertainty for a discriminating monopolist when demands are interdependent. Econometrica 53, 345–361 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cremer, J., McLean, R.P.: Full extraction of the surplus in bayesian and dominant strategy auctions. Econometrica 56, 1247–1257 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Emek, Y., Feldman, M., Gamzu, I., Paes Leme, R., Tennenholtz, M.: Signaling schemes for partition value maximization. In: 13th ACM Conference on Electronic Commerce (EC), pp. 514–531 (2012)Google Scholar
  11. 11.
    Feige, U., Vondrák, J.: The submodular welfare problem with demand queries. Theor. Comput. 6, 247–290 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ghosh, A., Nazerzadeh, H., Sundararajan, M.: Computing optimal bundles for sponsored search. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp. 576–583. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  13. 13.
    Khot, S., Lipton, R., Markakis, E., Mehta, A.: Inapproximability results for combinatorial auctions with submodular utility functions. Algorithmica 52, 3–18 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Lehmann, B., Lehmann, D.J., Nisan, N.: Combinatorial auctions with decreasing marginal utilities. Games Econ. Behav. 55, 270–296 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Levin, J., Milgrom, P.: Online advertising: Heterogeneity and conflation in market design. Am. Econ. Rev. 100, 603–607 (2010)CrossRefGoogle Scholar
  16. 16.
    Milgrom, P.: Simplified mechanisms with an application to sponsored-search auctions. Games Econ. Behav. 70, 62–70 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Milgrom, P.R., Weber, R.J.: A theory of auctions and competitive bidding. Econometrica 50, 1089–1122 (1982)CrossRefzbMATHGoogle Scholar
  18. 18.
    Milgrom, P.R., Weber, R.J.: The value of information in a sealed-bid auction. J. Math. Econ. 10, 105–114 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Miltersen, P. B., Sheffet, O.: Send mixed signals - Earn more, work less. In: 13th ACM Conference on Electronic Commerce (EC), pp. 234–247 (2012)Google Scholar
  20. 20.
    Vondrák, J.: Optimal approximation for the submodular welfare problem in the value oracle model. In: 40th ACM Symposium on Theory of Computing (STOC), pp. 67–74 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Fidaa Abed
    • 1
  • Ioannis Caragiannis
    • 2
  • Alexandros A. Voudouris
    • 2
  1. 1.Technische Universität BerlinBerlinGermany
  2. 2.Computer Technology Institute and Press “Diophantus” and Department of Computer Engineering and InformaticsUniversity of PatrasRionGreece

Personalised recommendations