# Near-Optimal Asymmetric Binary Matrix Partitions

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9235)

## Abstract

We study the asymmetric binary matrix partition problem that was recently introduced by Alon et al. (WINE 2013) to model the impact of asymmetric information on the revenue of the seller in take-it-or-leave-it sales. Instances of the problem consist of an $$n \times m$$ binary matrix A and a probability distribution over its columns. A partition scheme$$B=(B_1,...,B_n)$$ consists of a partition $$B_i$$ for each row i of A. The partition $$B_i$$ acts as a smoothing operator on row i that distributes the expected value of each partition subset proportionally to all its entries. Given a scheme B that induces a smooth matrix $$A^B$$, the partition value is the expected maximum column entry of $$A^B$$. The objective is to find a partition scheme such that the resulting partition value is maximized. We present a 9 / 10-approximation algorithm for the case where the probability distribution is uniform and a $$(1-1/e)$$-approximation algorithm for non-uniform distributions, significantly improving results of Alon et al. Although our first algorithm is combinatorial (and very simple), the analysis is based on linear programming and duality arguments. In our second result we exploit a nice relation of the problem to submodular welfare maximization.

## References

1. 1.
Akerlof, G.A.: The market for lemons: quality uncertainty and the market mechanism. Quaterly J. Econ. 84, 488–500 (1970)
2. 2.
Alon, N., Feldman, M., Gamzu, I., Tennenholtz, M.: The asymmetric matrix partition problem. In: Chen, Y., Immorlica, N. (eds.) WINE 2013. LNCS, vol. 8289, pp. 1–14. Springer, Heidelberg (2013)
3. 3.
Athanassopoulos, S., Caragiannis, I., Kaklamanis, C.: Analysis of approximation algorithms for k-set cover using factor-revealing linear programs. Theor. Comput. Sys. 45(3), 555–576 (2009)
4. 4.
Athanassopoulos, S., Caragiannis, I., Kaklamanis, C., Kyropoulou, M.: An improved approximation bound for spanning star forest and color saving. In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 90–101. Springer, Heidelberg (2009)
5. 5.
Caragiannis, I.: Wavelength management in WDM rings to maximize the number of connections. SIAM J. Discrete Math. 23(2), 959–978 (2009)
6. 6.
Caragiannis, I., Kaklamanis, C., Kyropoulou, M.: Tight approximation bounds for combinatorial frugal coverage algorithms. J. Comb. Optim. 26(2), 292–309 (2013)
7. 7.
Crawford, V., Sobel, J.: Strategic information transmission. Econometrica 50, 1431–1451 (1982)
8. 8.
Cremer, J., McLean, R.P.: Optimal selling strategies under uncertainty for a discriminating monopolist when demands are interdependent. Econometrica 53, 345–361 (1985)
9. 9.
Cremer, J., McLean, R.P.: Full extraction of the surplus in bayesian and dominant strategy auctions. Econometrica 56, 1247–1257 (1988)
10. 10.
Emek, Y., Feldman, M., Gamzu, I., Paes Leme, R., Tennenholtz, M.: Signaling schemes for partition value maximization. In: 13th ACM Conference on Electronic Commerce (EC), pp. 514–531 (2012)Google Scholar
11. 11.
Feige, U., Vondrák, J.: The submodular welfare problem with demand queries. Theor. Comput. 6, 247–290 (2010)
12. 12.
Ghosh, A., Nazerzadeh, H., Sundararajan, M.: Computing optimal bundles for sponsored search. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp. 576–583. Springer, Heidelberg (2007)
13. 13.
Khot, S., Lipton, R., Markakis, E., Mehta, A.: Inapproximability results for combinatorial auctions with submodular utility functions. Algorithmica 52, 3–18 (2008)
14. 14.
Lehmann, B., Lehmann, D.J., Nisan, N.: Combinatorial auctions with decreasing marginal utilities. Games Econ. Behav. 55, 270–296 (2006)
15. 15.
Levin, J., Milgrom, P.: Online advertising: Heterogeneity and conflation in market design. Am. Econ. Rev. 100, 603–607 (2010)
16. 16.
Milgrom, P.: Simplified mechanisms with an application to sponsored-search auctions. Games Econ. Behav. 70, 62–70 (2010)
17. 17.
Milgrom, P.R., Weber, R.J.: A theory of auctions and competitive bidding. Econometrica 50, 1089–1122 (1982)
18. 18.
Milgrom, P.R., Weber, R.J.: The value of information in a sealed-bid auction. J. Math. Econ. 10, 105–114 (1982)
19. 19.
Miltersen, P. B., Sheffet, O.: Send mixed signals - Earn more, work less. In: 13th ACM Conference on Electronic Commerce (EC), pp. 234–247 (2012)Google Scholar
20. 20.
Vondrák, J.: Optimal approximation for the submodular welfare problem in the value oracle model. In: 40th ACM Symposium on Theory of Computing (STOC), pp. 67–74 (2008)Google Scholar

© Springer-Verlag Berlin Heidelberg 2015

## Authors and Affiliations

• Fidaa Abed
• 1
• Ioannis Caragiannis
• 2
• Alexandros A. Voudouris
• 2
Email author
1. 1.Technische Universität BerlinBerlinGermany
2. 2.Computer Technology Institute and Press “Diophantus” and Department of Computer Engineering and InformaticsUniversity of PatrasRionGreece