Advertisement

Acid Rivers and Lakes at Caviahue-Copahue Volcano as Potential Terrestrial Analogues for Aqueous Paleo-Environments on Mars

  • A. Rodríguez
  • J. C. VarekampEmail author
  • M. J. van Bergen
  • T. J. Kading
  • P. Oonk
  • C. H. Gammons
  • M. Gilmore
Chapter
Part of the Active Volcanoes of the World book series (AVOLCAN)

Abstract

Mars carries primary rock with patchy occurrences of sulfates and sheet silicates. Both Mg- and Fe- sulfates have been documented, the former being rather uncommon on Earth. To what extent can a natural acidic river system on Earth be a terrestrial analog for early Mars environments? Copahue volcano (Argentina) has an active acid hydrothermal system that has precipitated a suite of minerals in its hydrothermal reservoir (silica, anhydrite, alunite, jarosite). Leakage from this subterranean system through hot springs and into the crater lake have formed a strongly acidified watershed (Río Agrio), which precipitates a host of minerals during cooling and dilution downstream. A suite of more than 100 minerals has been found and conditions for precipitation of the main phases are simulated with speciation/saturation routines. The lower part of the watershed (Lake Caviahue and the Lower Río Agrio) have abundant deposits of ferricrete since 2003: hydrous ferric oxides and schwertmannite occur, their precipitation being mediated by Fe-oxidizing bacteria and photochemical processes. Further downstream, at greater degrees of dilution, hydrous aluminum oxides and sulfates form and create ‘alcretes’ lining the river bed. The watershed carries among others jarosite, hematite, anhydrite, gypsum and silica minerals and the origin of all these minerals could be modeled through cooling/dilution of the primary hot spring fluids. Single evolution (acidification through capture of volcanic gases, water rock interaction to acquire the dissolved cations) through cooling of the primary fluids could explain most of the Fe-bearing minerals, but to precipitate Mg-sulfates, evaporation and renewed interaction with olivine-rich rocks is needed to saturate some common Mg-sulfates (e.g., epsomite). The schwertmannite beds formed through processes involving Fe-oxidizing bacteria, which may be significant if this mineral was common on Mars in the past. Photochemical processes on Mars are commonly discussed in terms of photo-oxidation of Fe, but photo-reduction may be a common process as well, as was found to be the case in the Río Agrio watershed. A model of waters acidified by the capture of S-rich volcanic gases that have reacted with basaltic rocks, and then evaporated or were neutralized by higher alkalinity surface fluids may explain the origin of the sulfate mineral suites on Mars quite well.

Keywords

Water geochemistry Acidic waters Mineral precipitation Rio agrio 

References

  1. Acero P, Ayora C, Torrento C, Nieto JM (2006) The behaviour of trace elements during schwertmannite precipitation and subsequent transformation into goethite and jarosite. Geochim Cosmochim Acta 70:4130–4139CrossRefGoogle Scholar
  2. Africano F, Bernard A (2000) Acid alteration in the fumarolic environment of Usu volcano, Hokkaido, Japan. J Volcanol Geotherm Res 97:475–495CrossRefGoogle Scholar
  3. Agusto MR, Varekamp JC (2015) Geochemistry of the acidic waters of the Copahue volcano-hydrothermal system with applications for volcanic surveillance, this volumeGoogle Scholar
  4. Allison JD, Brown DS, Novo-Gradak KJ (1991) MINTEQA2/PRODEAFA2, a geochemical assessment model for environmental systems. U.S. Environmental Protection Agency, Washington DC, EPA/600/3-91/021Google Scholar
  5. Alexander EW (2014) Aqueous geochemistry of an active magmato-hydrothermal system: Copahue Volcano, Río Agrio, and Lake Caviahue, Neuquén, Argentina. Undergraduate thesis, Wesleyan University, Middletown CT, USA, pp 1–100Google Scholar
  6. Andrews-Hanna JC, Zuber MT, Arvidson RE, Wiseman SM (2010) Early Mars hydrology: Meridiani playa deposits and the sedimentary record of Arabia Terra. J Geophys Res 115:E06002Google Scholar
  7. Arvidson R, Poulet F, Morris RV, Bibring J-P, Bell III JF, Squyres SW, Christensen PR, Bellucci G, Gondet B, Ehlmann BL, Farrand WH, Fergason RL, Golombek M, Griffes JL, Grotzinger J, Guinness EA, Herkenhoff KE, Johnson JR, Klingelhöfer G, Langevin Y, Ming D, Seelos K, Sullivan RJ, Ward JG, Wiseman SM, Wolff M (2006) Nature and origin of the hematite-bearing plains of Terra Meridiani based on analyses of orbital and Mars Exploration Rover data sets. J Geophys Res 11:E12S08. doi: 10.1029/2006JE002728
  8. Baffico GD, Diaz MM, Wenzel MT, Koschorreck M, Schimmele M, Neu TR, Pedrozo F (2004) Community structure and photosynthetic activity of epilithon from a highly acidic (pH 2) mountain stream in Patagonia, Argentina. Extremophiles 8:463–473CrossRefGoogle Scholar
  9. Baldridge AM, Hook SJ, Crowley JK, Marion GM, Kargel JS, Michalski JL, Thomson BJ, de Souza Filho CR, Bridges NT, Brown AJ (2009) Contemporaneous deposition of phyllosilicates and sulfates: using Australian acidic saline lake deposits to describe geochemical variability on Mars. Geophys Res Lett 36:L19201. doi: 10.1029/2009GL040069 CrossRefGoogle Scholar
  10. Bandfield JL, Hamilton VE, Christensen PR (2000) A global view of Martian surface compositions from MGS-TES. Science 287:1626–1630CrossRefGoogle Scholar
  11. Bandfield JL, Rogers AD (2008) Olivine dissolution by acidic fluids in Argyre Planitia, Mars: evidence for a widespread process? Geology. doi: 10.1130/G24724A.1 Google Scholar
  12. Baratoux D, Pinet P, Toplis MJ, Mangold N, Greeley R, Baptista AR (2009) Shape, rheology and emplacement times of small Martian shield volcanoes. J Volcanol Geotherm Res 185:47–68CrossRefGoogle Scholar
  13. Benison KC, LaClair DA (2003) Modern and ancient extremely acid saline deposits: terrestrial analogs for Martian environments? Astrobiology 3:609–618CrossRefGoogle Scholar
  14. Benner SA, Devine KG, Matveeva LN, Powell DH (2000) The missing organic molecules on Mars. Proceed Nat Acad Sci 97:2425–2430CrossRefGoogle Scholar
  15. Bermúdez A, Delpino D (1995) Mapa de los peligros potenciales en el área del Volcán Copahue—sector Argentino. Volcanic Hazard Map. The Geological Survey of the Province of Neuqúen, ArgentinaGoogle Scholar
  16. Bibring J-P, Langevin Y, Gendrin A, Gondet B, Poulet F, Berthé M, Soufflot A, Arvidson R, Mangold N, Mustard J, Drossart P, the OMEGA team (2005) Mars surface diversity as revealed by the OMEGA/Mars Express observations. Science 307:1576–1581Google Scholar
  17. Bigham JM, Schwertmann U, Carlson L, Murad E (1990) A poorly crystallized oxyhydroxysulfate of iron formed by bacterial oxidation of Fe(II) in acid mine waters. Geochim Cosmochim Acta 54:2743–2758CrossRefGoogle Scholar
  18. Bigham JM, Schwertmann U, Traina SJ, Winland RL, Wolf M (1996a) Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochim Cosmochim Acta 60:2111–2121CrossRefGoogle Scholar
  19. Bigham JM, Schwertmann U, Pfab G (1996b) Influence of pH on mineral speciation in a bioreactor simulating acid mine drainage. Appl Geochem 11:845–849CrossRefGoogle Scholar
  20. Bigham JM, Nordstrom DK (2000) Iron and aluminium hydroxysulfates from acid sulfate wateres. In Alpers CN, Jambor JL, Nordstrom DK (eds) Sulfate minerals, crystallography, geochemistry, and environmental significance, vol 40. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, Washington, D.C., pp 351–403Google Scholar
  21. Bishop JL Murad E (1996) Schwertmannite on Mars? Spectroscopic analyses of schwertmannite, its relationship to other ferric minerals, and its possible presence in the surface material of Mars. In: Dyar MD, McCammon C, Schaefer MW (eds) Mineral spectroscopy: a tribute to Roger G Burns, vol 5. Geochemical Society Special Publications, Houston, pp 337–358Google Scholar
  22. Bishop JL, Parente M, Wietz CM, Noe Dobrea EZ, Roach LH, Murchie SL, McGuire PC, McKeown NK, Rossi CM, Brown AJ, Calvin WM, Milliken R, Mustard JF (2009) Mineralogy of Juventae Chasma: sulfates in the light-toned mounds, mafic minerals in the bedrock, and hydrated silica and hydroxylated ferric sulfate on the plateau. J Geophys Res 114:E00D09Google Scholar
  23. Bishop JL, Dyar MD, Lane MD, Banfield JF (2005) Spectral identification of hydrated sulfates on Mars and comparison with acidic environments on Earth. Int J Astrobiol 3:275–285CrossRefGoogle Scholar
  24. Blodau C, Knorr KH (2006) Experimental inflow of groundwater induces a biogeochemical regime shift in iron-rich and acidic sediments. J Geophys Res 111:G02026Google Scholar
  25. Borowska Z, Mauzerall D (1986) Formation of hydrogen on irradiation of aqueous ferrous iron by UV-light at neutral pH. Orig Life Evol Biosph 16:194–195CrossRefGoogle Scholar
  26. Brady KS, Bigham JM, Jaynes WF, Logan TJ (1986) Influence of sulfate on Fe-oxide formation: compositions with a stream receiving acid mine drainage. Clays Clay Mineral 34:266–274CrossRefGoogle Scholar
  27. Braterman P, Cairns-Smith AG, Sloper RW (1983) Photo-oxidation of hydrated Fe2+−significance for banded iron formations. Nature 303:163–164CrossRefGoogle Scholar
  28. Cairns-Smith AG (1978) Precambrian solution photochemistry, inverse segregation, and banded iron formations. Nature 276:807–808CrossRefGoogle Scholar
  29. Carr MH, Head JW (2010) Geologic history of Mars. Earth Planet Sci Lett 294:185–203CrossRefGoogle Scholar
  30. Chevrier V, Mathé PE (2007) Mineralogy and evolution of the surface of Mars: a review. Plan Space Sci 55:289–314CrossRefGoogle Scholar
  31. Christensen PR, Banfield JL, Clark RN, Edgett KS, Hamilton VE, Hoefen T, Kieffer HH, Kuzmin RO, Lane MD, Malin MC, Morris RV, Pearl JC, Pearson R, Roush TL, Ruff SW, Smith MD (2000) Detection of crystalline hematite mineralization on Mars by the thermal emission spectrometer: evidence for near-surface water. J Geophys Res 105(E4):9623–9642CrossRefGoogle Scholar
  32. Clark RN, Swayze GA, Wise RA, Eric Livo K, Hoefen TM, Kokaly RF, Sutley SJ (2007) USGS digital spectral library splib06a. U.S. Geological Survey, Digital Data Series 231Google Scholar
  33. Collienne RH (1983) Photo-reduction of iron in the epilimnion of acidic lakes. Limnol Oceanogr 28:83–100CrossRefGoogle Scholar
  34. Cousins CR, Crawford IA, Carrivick JL, Gunn M, Harris J, Kee TP, Karlsson M, Carmody L, Cockell C, Herschy B, Joy KH (2013) Glaciovolcanic hydrothermal environments in Iceland and implications for their detection on Mars. J Volcanol Geotherm Res 256:61–77CrossRefGoogle Scholar
  35. Cowie BR, Slater GF, Bernier L, Warren LA (2009) Carbon isotope fractionation in phospholipid fatty acid biomarkers of bacteria and fungi native to an acid mine drainage lake. Org Geochem 40:956–962CrossRefGoogle Scholar
  36. David F, David PG (1976) Photoredox chemistry of iron(III), chloride and iron(III) perchlorate in aqueous media. A comparative study. J Phys Chem 80:579–583Google Scholar
  37. Delmelle P, Bernard A (1994) Geochemistry, mineralogy and chemical modeling of the acid crater lake of Kawah-Ijen Volcano, Indonesia. Geochim Cosmochim Acta 58:2445–2460CrossRefGoogle Scholar
  38. Delmelle P, Bernard A, Kusakabe M, Fischer TP, Takano B (2000) Geochemistry of the magmatic-hydrothermal system of Kawah Ijen volcano, East Java, Indonesia. J Volcanol Geotherm Res 97:31–53CrossRefGoogle Scholar
  39. Delmelle P, Bernard A (2000) Downstream composition changes of acidic volcanic waters discharged into the Banyupahit stream, Ijen caldera, Indonesia. J Volcanol Geotherm Res 97:55–75CrossRefGoogle Scholar
  40. Ehlmann BL, Edwards CS (2014) Mineralogy of the Martian surface. Ann Rev Earth Plan Sci 42:291–315CrossRefGoogle Scholar
  41. Emmenegger L, Schönenberger R, Sigg L, Sulzberger B (2001) Light-induced redox cycling of iron in circumneutral lakes. Limnol Oceanogr 46:49–61CrossRefGoogle Scholar
  42. Farrand WH, Glotch TD, Rice JW Jr, Hurowitz JA, Swayze GA (2009) Discovery of jarosite within the Mawrth Vallis region of Mars: implications for the geologic history of the region. Icarus 204:478–488CrossRefGoogle Scholar
  43. Faure G (1997) Principles and Applications of Geochemistry, 2nd edn. Prentice Hall, Upper Saddle River, NJGoogle Scholar
  44. Fernandez-Remolar D, Gomez-Elvira J, Gomez F, Sebastian E, Martiin J, Manfredi JA, Torres J, Gonzalez Kesler C, Amils R (2004) The Tinto River, an extreme acidic environment under control of iron, as an analog of the Terra Meridiani hematite site of Mars. Planet Space Sci 52:239–248CrossRefGoogle Scholar
  45. Gagliano WB, Brill MR, Bigham JM, Jones FS, Traina SJ (2004) Chemistry and mineralogy of ochreous sediments in a constructed mine drainage wetland. Geochim Cosmochim Acta 68:2119–2128CrossRefGoogle Scholar
  46. Gammons CH, Wood SA, Pedrozo F, Varekamp JC, Nelson B, Shope CL, Baffico G (2005a) Hydrogeochemistry and rare earth element behavior in a volcanically acidified watershed in Patagonia, Argentina. Chem Geol 222:249–267CrossRefGoogle Scholar
  47. Gammons CH, Nimick DA, Parker SR, Cleasby TE, McClesky RB (2005b) Diel behavior of iron and other heavy metals in a mountain stream with acidic to neutral pH: Fisher Creek, MT, USA. Geochim Cosmochim Acta 69:2505–2516CrossRefGoogle Scholar
  48. Gammons CH, Nimick DA, Parker SR, Snyder DM, McCleskey RB, Amils R, Poulson SR (2008) Photo-reduction fuels biogeochemical cycling of iron in Spain’s acid rivers. Chem Geology 252:202–213CrossRefGoogle Scholar
  49. Gellert R, Rieder R, Anderson R, Bruckner J, Clark B, Dreibus G, Economou T, Klingelhofer G, Lugmair G, Ming D, Squyres S, d'Uston C, Wanke H, Yen A, Zipfel J (2004) Chemistry of rocks and soils in Gusev crater from the alpha particle x-ray spectrometer. Science 305: 829–832Google Scholar
  50. Gellert R, Rieder R, Brückner J, Clark BC, Dreibus G, Klingelhöfer G, Lugmair G, Ming DW, Wänke H, Yen A, Zipfel J, Squyres SW (2006) Alpha Particle X-Ray Spectrometer (APXS): Results from Gusev crater and calibration report. J Geophys Res 111(E2):2156–2202Google Scholar
  51. Gíslasson SR, Arnórsson S (1993) Dissolution of primary basaltic minerals in natural waters—saturation state and kinetics. Chem Geol 105:117–135CrossRefGoogle Scholar
  52. Glotch TD, Bandfield JL, Christensen PR, Calvin WM, McLennan SM, Clark BC, Rogers AD, Squyres SW (2006) Mineralogy of the light-toned outcrop at Meridiani Planum as seen by the Miniature Thermal Emission Spectrometer and implications for its formation. J Geophys Res 111:E12S03Google Scholar
  53. Golden DC, Ming DW, Morris RV, Mertzman SA (2005) Laboratory-simulated acid-sulfate weathering of basaltic materials: Implications for formation of sulfates at Meridiani Planum and Gusev crater, Mars. J Geophys. Res-Planets 110:E12CrossRefGoogle Scholar
  54. Greenwood JP, Blake RE (2006) Evidence for an acidic ocean on Mars from phosphorus geochemistry of Martian soils and rocks. Geology 34:953–956CrossRefGoogle Scholar
  55. Grott M, Baratoux D, Hauber E, Sautter V, Mustard J, Gasnault O, Ruff SW, Karato SI, Debaille V, Knapmeyer M, Sohl F, Van Hoolst T, Breuer D, Morschhauser A, Toplis MJ (2013) Long-term evolution of the Martian crust-mantle system. Space Sci Rev 174:49–111CrossRefGoogle Scholar
  56. Grotzinger JP, Arvidson RE, Bell JF III, Calvin W, Clark BC, Fike DA, Golombek M, Greeley R, Haldemann AFC, Herkenhoff KE, Joliff BL, Knoll AH, Malin MC, McLennan SM, Parker T, Soderblom LA, Sohl-Dickstein JN, Squyres SW, Tosca NJ, Watters WA (2005) Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars. Earth Planet Sci Lett 240:11–72CrossRefGoogle Scholar
  57. Hartmann WK, Neukum G (2001) Cratering chronology and the evolution of Mars. Space Sci Rev 96:165–194CrossRefGoogle Scholar
  58. Hausrath EM, Golden DC, Morris RV, Agresti DG, Ming DW (2013) Acid sulfate alteration of fluorapatite, basaltic glass and olivine by hydrothermal vapors and fluids: implications for fumarolic activity and secondary phosphate phases in sulfate-rich Paso Robles soil at Gusev Crater. Mars. J Geophys Res-Planets 118:E1CrossRefGoogle Scholar
  59. Horgan BH, Bell JF III, Noe Dobrea EZ, Cloutis EA, Bailey DT, Craig MA, Roach LH, Mustard JF (2009) Distribution of hydrated minerals in the north polar region of Mars. J Geophys Res 114:E01005Google Scholar
  60. Hurowitz JA, McLennan SM (2007) A ~ 3.5 Ga record of water-limited, acidic weathering conditions on Mars. Earth Planet Sci Lett 260:432–443CrossRefGoogle Scholar
  61. Hurowitz JA, Fischer WW (2014) Contrasting styles of water–rock interaction at the Mars Exploration Rover landing sites. Geochim Cosmochim Acta 127:25–38Google Scholar
  62. Hurowitz JA, Fischer WW, Tosca NJ, Milliken RE (2010) Origin of acidic surface waters and the evolution of atmospheric chemistry on early Mars. Nat Geosci 3:323–326CrossRefGoogle Scholar
  63. Jonsson J, Persson P, Sjoberg S, Lovgren L (2005) Schwertmannite precipitated from acid mine drainage: phase transformation, sulfate release and surface properties. Appl Geochem 20:179–191CrossRefGoogle Scholar
  64. Kading TJ, Varekamp JC (2009) Schwertmannite precipitation in glacial Lake Caviahue, Neuquén, Argentina. Geol Soc Am Abstr Programs 43:77Google Scholar
  65. Kading TJ, Varekamp JC (2011) Lake Caviahue (Argentina) as a source-sink for volcanic arsenic and phosphorus. Geol Soc Am Abstr Programs 41:645Google Scholar
  66. Kading TJ (2010) Natural pollutant attenuation by schwertmannite at Copahue Volcano, Argentina [M.A. thesis]: Middletown, Wesleyan University, Middletown CT USA, pp 247Google Scholar
  67. Kim JD, Yee N, Nanda V, Falkowski PG (2013) Anoxic photochemical oxidation of siderite generates molecular hydrogen and iron oxides. Proc Natl Acad Sci 110:10073–10077CrossRefGoogle Scholar
  68. Kimball BA, McKnight DM, Wetherbee GA, Harnish RA (1992) Mechanisms of iron photo-reduction in a metal-rich, acidic stream (St. Kevin Gulch, Colorado, USA). Chem Geol 96:227–239CrossRefGoogle Scholar
  69. King HE, Plumper O, Geisler T, Putnis A (2011) Experimental investigations into the silicification of olivine: Implications for the reaction mechanism and acid neutralization. Am Mineral 96:1503–1511CrossRefGoogle Scholar
  70. Klingelhöfer G, Morris RV, Bernhardt B, Schroder S, Rodionov DS, de Souza Jr PA, Yen A, Gellert R, Evlanov EN, Zubkov B, Foh J, Bonnes U, Kankeleit E, Gütlich P, Ming DW, Renz F, Wdowiak T, Squyres SW, Arvidson RE (2004) Jarosite and hematite at Meridiani Planum from Opportunity’s Mössbauer spectrometer. Science 306:1740–1745CrossRefGoogle Scholar
  71. Kumpulainen S, Carlson L, Raisanen M-L (2007) Seasonal variations of ochreous precipitates in mine effluents in Finland. Appl Geochem 22:760–777CrossRefGoogle Scholar
  72. Kusakabe M, Komoda Y, Takano B, Abiko T (2000) Sulfur isotopic effects in the disproportionation reaction of sulfur dioxide in hydrothermal fluids: implications for the delta S-34 variations of dissolved bisulfate and elemental sulfur from active crater lakes. J Volcanol Geotherm Res 97:287–307CrossRefGoogle Scholar
  73. Lees H, Kwok SC, Suzuki I (1969) The thermodynamics of iron oxidation by the Ferrobacilli. Can J Microbiol 15:43–46CrossRefGoogle Scholar
  74. Lundgreen B, Jensen HG, Knudsen JM, Olsen M, Vistisen L (1989) Photostimulated oxidation of Fe2 + (aq): a Mars simulation experiment studied by Mössbauer spectroscopy. Phys Scr 39:670CrossRefGoogle Scholar
  75. McCanta MC, Dyar MD, Treiman AH (2014) Alteration of Hawaiian basalts under sulfur-rich conditions: applications to understanding surface-atmosphere interactions on Mars and Venus. Am Mineral 99:291–302CrossRefGoogle Scholar
  76. McHenry LJ, Vhevrier V, Schröder C (2011) Jarosite in a Pleistocene East African saline-alkaline paleolacustrine deposit: implications for Mars aqueous geochemistry. J Geophys Res 116:E04002Google Scholar
  77. McLennan SM, Bell JF III, Calvin WM, Christensen PR, Clark BC, De Souza PA, Farmer J, Farrand WH, Fike DA, Gellert R, Ghosh A, Glotch TD, Grotzinger JP, Hahn BC, Herkenhoff KE, Hurowitz JA, Johnson JR, Johnson SS, Joliff BL, Klingelhoefer G, Knoll AH, Learner ZA, Malin MC, McSween Jr HY, Pocock J, Ruff SW, Soderblom LA, Squyres SW, Tosca NJ, Watters WA, Wyatt MB, Yen A (2005) Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars. Earth Planet Sci Lett 240:95–121CrossRefGoogle Scholar
  78. McKnight D, Bencala KE (1988) Diel variations in iron chemistry in an acidic stream in the Colorado Rocky Mountains, USA. Arctic Alpine Res 20:492–500CrossRefGoogle Scholar
  79. McKnight DM, Kimball BA, Bencala KE (1988) Iron photo-reduction and oxidation in an acidic mountain stream. Science 240:637–640CrossRefGoogle Scholar
  80. McKnight DM, Kimball BA, Runkel RL (2001) The pH dependence of iron photo-reduction in a rocky mountain stream affected by acid mine drainage. Hydrol Proc 15:1979–1992CrossRefGoogle Scholar
  81. McKnight DM, Duren SM (2004) Biogeochemical processes controlling midday ferrous iron maxima in stream waters affected by acid rock drainage. Appl Geochem 19:1075–1084CrossRefGoogle Scholar
  82. McSween HY Jr (1999) Meteorites and their parent planets, Revised 2nd edn, Cambridge University Press, New York, pp 310Google Scholar
  83. McSween HY Jr, Taylor GJ, Wyatt MB (2009) Elemental composition of the Martian Crust. Science 32:736–739Google Scholar
  84. Milliken RE, Swayze GA, Arvidson RE, Bishop JL, Clark RN, Ehlmann BL, Green RO, Grotzinger JP, Morris RV, Murchie SL, Mustard JF, Weitz C (2008) Opaline silica in young deposits on Mars. Geology 36:847–50Google Scholar
  85. Ming DW, Mittlefehldt DW, Morris RV, Golden DC, Gellert R, Yen A, Clark BC, Squyres SW, Farrand WH, Ruff SW, Arvidson RE, Klingelhofer G, McSween HY, Rodionov DS, Schröder C, de Souza PA, Wang A. (2006) Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars. J Geophys Res 111:E02S12, doi: 10.1029/2005JE002560
  86. Ming DW, Archer Jr PD, Glavin DP, Eigenbrode JL, Franz HB, Sutter B, Brunner AE, Stern JC, Freissinet C, McAdam AC, Mahaffy PR, Cabane M, Coll P, Campbell JL, Atreya SK, Niles PB, Bell III JF, Bish DL, Brinckerhoff WB, Buch A, Conrad PG, Des Marais DJ, Ehlmann BL, Fairén AG, Farley K, Flesch GJ, Francois P, Gellert R, Grant JA, Grotzinger JP, Gupta S, Herkenhoff KE, Hurowitz JA, Leshin LA, Lewis KW, McLennan SM, Miller KE, Moersch J, Morris RV, Navarro-González R, Pavlov AA, Perrett GM, Pradler I, Squyres SW, Summons RE, Steele A, Stolper EM, Sumner DY, Szopa C, Teinturier S, Trainer MG, Treiman AH, Vaniman DT, Vasavada AR, Webster CR, Wray JJ, Yingst RA, MSL Science Team (2013) Volatile and Organic Compositions of Sedimentary Rocks in Yellowknife Bay, Gale Crater, Mars. Science 343, doi: 10.1126/science.1245267
  87. Morris RV, Ming DW, Golden DC, Bell III JF (1996) An occurrence of jarosite tephra on Mauna Kea, Hawaii: Implications for the ferric mineralogy of the Martian surface. In MD Dyar, C McCammon, MW Schaefer (eds), Mineral Spectroscopy: a tribute to Roger G. Burns, The Geochemical Society, Special Publication 5:327–336Google Scholar
  88. Morris RV, Klingelhöfer G, Schroeder C, Fleischer I, Ming DW, Yen AS, Gellert R, Arvidson RE, Rodionov DS, Crumpler LS, Clark BC, Cohen BA, McCoy TJ, Mittlefehldt DW, Schmidt ME, de Souza PA, Jr. and Squyres SW (2008) Iron mineralogy and aqueous alteration from Husband Hill through Home Plate at Gusev Crater, Mars: Results from the Mössbauer instrument on the Spirit Mars Exploration Rover. J Geophys Research-Planets 113, E12S42.Google Scholar
  89. Mustard JF, Poulet F, Gendrin A, Bibring J-P, Langevin Y, Gondet B, Mangold N, Bellucci G, Altieri F (2005) Olivine and pyroxene diversity in the crust of Mars. Science 307:1594–1597CrossRefGoogle Scholar
  90. Mustard JF, Murchie SL, Pelkey SM, Ehlmann BL, Milliken RE, Grant JA, Bibring J, Poulet F, Bishop J, Dobrea EN, Roach L, Seelos F, Arvidson RE, Wiseman S, Green R, Hash C, Humm D, Malaret E, McGovern JA, Seelos K, Clancy T, Clark R, Des Marais D, Izenberg N, Knudson A, Langevin Y, Martin T, McGuire P, Morris R, Robinson M, Roush T, Smith M, Swayze G, Taylor H, Titus T,  Wolff M (2008) Hydrated silicate minerals on mars observed by the Mars reconnaissance orbiter CRISM instrument. Nature 454:305–309Google Scholar
  91. Nesbitt HW, Young GM (1984) Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochim Cosmochim Acta 48:1523–1534CrossRefGoogle Scholar
  92. Nesbitt HW, Wilson RE (1992) Recent chemical weathering of basalts. Am J Sci 292:740–777CrossRefGoogle Scholar
  93. Niles PB, Michalski J (2009) Meridiani Planum sediments on Mars formed through weathering in massive ice deposits. Nature Geosciesce 2:215–220CrossRefGoogle Scholar
  94. Nimick DA, Gammons CH, Parker SR (2011) Diel biogeochemical processes and their effect on the aqueous chemistry of streams: a review. Chem Geol 283:3–17Google Scholar
  95. Nordstrom DK, Alpers CN, Ptacek CJ, Blowes DW (2000) Negative pH and extremely acidic mine waters from Iron Mountain, California. Environ Sci Technol 34:254–258CrossRefGoogle Scholar
  96. Oonk PBH (2013) Volcanic crater lake systems: a terrestrial analogue for the sulphate terrains on Mars. MSc thesis, Utrecht University, The Netherlands, pp 71Google Scholar
  97. Ouimette AP (2000) Hydrothermal processes at an active volcano, Copahue, Argentina. M.A. Thesis, Wesleyan University, Middletown, CT, USA, pp 219Google Scholar
  98. Papike JJ, Karner JM, Shearer CK (2006) Comparative planetary mineralogy: Implications of Martian and terrestrial jarosite: a crystal chemical perspective. Geochim Cosmochim Acta 70:1309–1321CrossRefGoogle Scholar
  99. Parker SR, Gammons CH, Pedrozo F, Wood SA (2008) Diel changes in metal concentrations in a geogenically acidic river: Río Agrio, Argentina. J Volcanol Geotherm Res 178:213–223CrossRefGoogle Scholar
  100. Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (Version 2)-A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. USGS Report 99–4259, pp 312Google Scholar
  101. Pedrozo F, Kelly L, Diaz M, Temporetti P, Baffico G, Kringel R, Friese K, Mages M, Geller W, Woelfl S (2001) Water chemistry, plankton and trophic status of an Andean acidic lake of volcanic origin in Patagonia. Hydrobiologia 452:129–137CrossRefGoogle Scholar
  102. Pedrozo FL, Temporetti PF, Beamud G, Diaz MM (2008) Volcanic nutrient inputs and trophic state of Lake Caviahue, Patagonia, Argentina. J Volcan Geotherm Res 178:205–212CrossRefGoogle Scholar
  103. Pitzer KS, Mayorga G (1973) Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent. J Phys Chem 77:2300–2308CrossRefGoogle Scholar
  104. Poulet F, Bibring JP, Mustard JF, Gendrin A, Mangold N, Langevin Y, Arvidson RE, Gondet B, Gomez C, Berthé M, Erard S, Forni O, Manaud N, Poulleau G, Soufflot A, Combes M, Drossart P, Encrenaz T, Fouchet T, Melchiorri R, Bellucci G, Altieri F, Formisano V, Fonti S, Capaccioni F, Cerroni P, Coradini A, Korablev O, Kottsov V, Ignatiev N, Titov D, Zasova L, Pinet P, Schmitt B, Sotin C, Hauber E, Hoffmann H, Jaumann R, Keller U, Forget F, Team Omega (2005) Phyllosilicates on Mars and implications for early Martian climate. Nature 438:623–627CrossRefGoogle Scholar
  105. Regenspurg S, Peiffer S (2005) Arsenate and chromate incorporation in schwertmannite. Appl Geochem 20:1226–1239CrossRefGoogle Scholar
  106. Roach LH, Mustard JF, Murchie SL, Bibring J-P, Forget F, Lewis KW, Aharonson O, Vincendon M, Bishop JL (2009) Testing evidence of recent hydration state change in sulfates on Mars. J Geophys Res 114:E00D02, doi: 10.1029/2008JE003245
  107. Schroth AW, Parnell RA (2005) Trace metal retention through the schwertmannite to goethite transformation as observed in a field setting, Alta Mine, MT. Appl Geochem 20:907–917CrossRefGoogle Scholar
  108. Schwertmann U, Cornell RM (2000) Iron oxides in the laboratory. Preparation and characterisation, Wiley-VCH, Weinheim pp 188CrossRefGoogle Scholar
  109. Sherman DM (2005) Electronic structures of iron(III) and manganese(IV) (hydr)oxide minerals: thermodynamics of photochemical reductive dissolution in aquatic environments. Geochim Cosmochim Acta 69:3249–3255CrossRefGoogle Scholar
  110. Singer PC, Stumm W (1970) Acidic mine drainage: the rate-determining step. Science 167:1121–1123CrossRefGoogle Scholar
  111. Stefánsson A, Gislason SR, Arnórsson S (2001) Dissolution of primary minerals in natural waters—II mineral saturation state. Chem Geol 172:251–276CrossRefGoogle Scholar
  112. Stoffregen RE (1993) Stability relations of jarosite and natrojarosite at 150–250 °C. Geochim Cosmochim Acta 57:2417–2429CrossRefGoogle Scholar
  113. Stoffregen RE, Alpers CN, Jambor JL (2000) Alunite–jarosite crystallography, thermodynamics, and geochronology. In: Alpers CN, Jambor JL, Nordstrom DK (eds) Sulfate minerals: crystallography, geochemistry, and environmental significance. Mineralogical Society of America, Washington, DC, pp 453–479Google Scholar
  114. Sullivan AB, Drever JI, McKnight DM (1998) Diel variation in element concentrations, Peru Creek, Summit County, Colorado. J Geochem Explor 64:141–145CrossRefGoogle Scholar
  115. Symonds RB, Gerlach TM, Reed MH (2001) Magmatic gas scrubbing: implications for volcano monitoring. J Volcanol Geotherm Res 108:303–341CrossRefGoogle Scholar
  116. Tanaka KL, Skinner JA, Dohm JrJM, Irwin RPIII, Kolb EJ, Fortezzo CM, Platz T, Michael GG, Hare TM (2014) Geologic map of Mars: U.S. Geol Survey Scientific Investigations Map 3292, scale 1:20,000,000, pamphlet p 43, http://dx.doi.org/10.3133/sim3292
  117. Tosca NJ, McLennan SM, Lindsley DH, Schoonen MAA (2004) Acid-sulfate weathering of synthetic Martian basalt: the acid fog model revisited. J Geophys Res-Planets 109:E5CrossRefGoogle Scholar
  118. Van Hinsberg V, Berlo K, Van Bergen M, Williams-Jones A (2010) Extreme alteration by hyperacidic brines at Kawah Ijen volcano, East Java, Indonesia: I. Textural and mineralogical imprint. J Volcanol Geotherm Res 198:253–263CrossRefGoogle Scholar
  119. Varekamp JC (2004) Copahue Volcano: A Modern Terrestrial Analogue for the Opportunity Landing Site? EOS 85(41):401–407CrossRefGoogle Scholar
  120. Varekamp JC (2008) The acidification of glacial Lake Caviahue, Province of Neuquen, Argentina. J Volcanol Geotherm Res, Special issue Volcanic Lakes and Environmental Impacts of Volcanic Fluids 178:184–196Google Scholar
  121. Varekamp JC (2015) The chemical composition and evolution of volcanic lakes. In D Rouwet, B Christenson, F Tassi, J vandeMeulenbrouck, (eds) Volcanic Lakes, Springer-Verlag, Chapter 4, 93–124Google Scholar
  122. Varekamp JC, Ouimette AP, Herman SW, Bermudez A, Delpino D (2001) Hydrothermal element fluxes from Copahue, Argentina: a beehive volcano in turmoil. Geology 29:1059–1062  Varekamp JC, Ouimette A, Kreulen R (2004) The magmato-hydrothermal system of Copahue volcano, Argentina. In: Proceedings of the 11th International Conference Water-Rock Interaction, WRI-11, vol 1, pp 215–218Google Scholar
  123. Varekamp JC, de Moor MJ, Merrill M, Colvin A, Goss A, Vroon P, Hilton D (2006) The geochemistry and isotopic characteristics of the Caviahue Copahue volcanic complex, Province of Neuquen, Argentina. Geol Soc Am Special Paper 407:317–342Google Scholar
  124. Varekamp JC, Ouimette AP, Herman SW, Flynn KS, Bermudez A. and Delpino D. (2009) Naturally acid waters from Copahue volcano, Argentina. Appl Geochem 24:1354–1354Google Scholar
  125. Varekamp JC, Zareski JE, Camfield LM, Todd E (2015) Copahue volcano and its regional magmatic setting, this volumeGoogle Scholar
  126. Voelker B, Morel FMM, Sulzberger B (1997) Iron redox cycling in surface waters: effects of humic substances and light. Environ Sci Technol 30:1106–1114CrossRefGoogle Scholar
  127. Webster JG, Swedlund PJ, Webster KS (1998) Trace metal adsorption onto an acid mine drainage iron (III) oxyhydroxysulfate. Environ Sci Technol 32:1361–1368CrossRefGoogle Scholar
  128. Weitz CM, Milliken RE, Grant JA, McEwen AS, Williams RME, Bishop JL, Thompson BJ (2011) Mars Reconnaissance Orbiter observations of light-toned layered deposits and associated fluvial landforms on the plateaus adjacent to Valles Marineris. Icarus 205:73–105CrossRefGoogle Scholar
  129. Wolff-Boenisch D, Gíslason SR, Oelkers EH, Putnis CV (2004) The dissolution rates of natural glasses as a function of their composition at pH 4 and 10.6, and temperatures from 25 to 74 °C. Geochim Cosmochim Acta 63:4843–4858CrossRefGoogle Scholar
  130. Wray JJ, Milliken RE, Dundas CM, Swayze GA, Andrews-Hanna JC, Baldridge AM, Chojnacki M, Bishop JL, Ehlmann BL, Murchie SL, Clark RN, Seelos FP, Tornabene LL Squyres SW (2011). Columbus crater and other possible groundwater-fed paleolakes of Terra Sirenum, Mars. J Geophys Res 116:E01001Google Scholar
  131. Wyatt MB, McSween HY, Tanaka KL, Head JW (2004) Global geologic context for rock types and surface alteration on Mars. Geology 32:645–648CrossRefGoogle Scholar
  132. Yu JY, Heo B, Choi IK, Cho JP, Chang HW (1999) Apparent solubilities of schwertmannite and ferrihydrite in natural stream water polluted by mine drainage. Geochim Cosmochim Acta 63:3407–3416CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • A. Rodríguez
    • 1
  • J. C. Varekamp
    • 2
    Email author
  • M. J. van Bergen
    • 1
  • T. J. Kading
    • 2
  • P. Oonk
    • 1
  • C. H. Gammons
    • 3
  • M. Gilmore
    • 2
  1. 1.Department of Earth SciencesUtrecht UniversityUtrechtThe Netherlands
  2. 2.Earth and Environmental SciencesWesleyan UniversityMiddletownUSA
  3. 3.Department of Geological EngineeringButteUSA

Personalised recommendations