Abstract
Copahue volcano (Province of Neuquen, Argentina) has produced lavas and strombolian deposits over several 100,000s of years, building a rounded volcano with a 3 km elevation. The products are mainly basaltic andesites, with the 2000–2012 eruptive products the most mafic. The geochemistry of Copahue products is compared with those of the main Andes arc (Llaima, Callaqui, Tolhuaca), the older Caviahue volcano directly east of Copahue, and the back arc volcanics of the Loncopue graben. The Caviahue rocks resemble the main Andes arc suite, whereas the Copahue rocks are characterized by lower Fe and Ti contents and higher incompatible element concentrations. The rocks have negative Nb-Ta anomalies, modest enrichments in radiogenic Sr and Pb isotope ratios and slightly depleted Nd isotope ratios. The combined trace element and isotopic data indicate that Copahue magmas formed in a relatively dry mantle environment, with melting of a subducted sediment residue. The back arc basalts show a wide variation in isotopic composition, have similar water contents as the Copahue magmas and show evidence for a subducted sedimentary component in their source regions. The low 206Pb/204Pb of some backarc lava flows suggests the presence of a second endmember with an EM1 flavor in its source. The overall magma genesis is explained within the context of a subducted slab with sediment that gradually looses water, water-mobile elements, and then switches to sediment melt extracts deeper down in the subduction zone. With the change in element extraction mechanism with depth comes a depletion and fractionation of the subducted complex that is reflected in the isotope and trace element signatures of the products from the main arc to Copahue to the back arc basalts.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abouchami W, Galer SJG, Hofmann AW (2000) High precision lead isotope systematics of lavas from the Hawaiian Scientific Drilling Project. Chem Geol 169:187–209
Agusto MR, Tassi F, Caselli A, Vaselli O, dos Santos Afonso M (2012) Seguimiento geoquímico de las aguas ácidas del sistema volcán Copahue – Río Agrio: posible aplicación para la identificación de precursores eruptivos. Rev As Geol Arg 69(4):481–495
Agusto MR, Tassi F, Caselli AT, Vaselli O, Rouwet D, Capaccioni B, Caliro S, Chiodini G, Darrah T (2013) Gas geochemistry of the magmatic-hydrothermal fluid reservoir in the Copahue-Caviahue Volcanic Complex (Argentina). J Volcanol Geotherm Res 257:44–56
Barazangi M, Isacks BL (1976) Spatial distribution of earthquakes and subduction of the Nazca plate beneath South America. Geology 4(11):686–692
Beck SL, Zandt G, Myers SC, Wallace TC, Silver PG, Drake L (1996) Crustal-thickness variations in the central Andes. Geology 24(5):407–410
Bermúdez A, Delpino D (1995) Mapa de los peligros potenciales en el area del Volcàn Copahue, Sector Argentino: Neuquen, Argentina. Province of Neuquen Geological Survey, scale 1:50 000
Bermúdez A, Delpino D (1999) Erupciones subglaciales y en contacto con el hielo en la región volcánica de Copahue, Neuquén. XIV Congreso Geológico Argentino, Còrdoba, Argentina, vol 2, pp 250–253
Bermúdez A, Delpino D, Frey F, Saal A (1993) Los basaltos de retroarco extraandinos. XII Congreso Geológico Argentino, Mendoza, Argentina, vol 1, pp 161–172
Bermúdez A, Delpino D, López-Escobar L (2002) Caracterización geoquímica de lavas y piroclastos holocenos del volcán Copahue, incluyendo los originados en la erupción del año 2000. Comparación con otros volcanes de la Zona Volcánica Sur de los Andes. XV Congreso Geológico Argentino, Calafate, Argentina, pp 377–382
Bevis M, Isacks BL (1984) Hypocentral trend surface analysis: probing the geometry of Benioff zones. J Geophys Res 89(B7):6153–6170
Cahill T, Isacks BL (1992) Seismicity and shape of the subducted Nazca plate. J Geophys Res 97(B12):17503–17529
Camfield L (2014) Copahue volcano, (Province Neuquen, Argentina): the 2012 eruption and its regional magmatic setting. MA Thesis, Wesleyan University, Middletown CT, p 187
Cembrano J, Lara L (2009) The link between volcanism and tectonics in the southern volcanic zone of the Chilean Andes: a review. Tectonophysics 471(1):96–113
Cembrano J, Hervé F, Lavenu A (1996) The Liquiñe-Ofqui fault zone; a long-lived intra-arc fault system in southern Chile: geodynamics of the Andes. Tectonophysics 259(1–3):55–66
Charrier R, Vicente J (1972) Liminary and geosyncline Andes: major orogenic phases and synchronical evolutions of the central and Magellan sectors of the Argentine Chilean Andes. In: Solid Earth problems conference, Upper Mantle Project, vol 2, pp 451–470
Colvin AS (2004) Trace element and isotope geochemistry of the Caviahue-Copahue volcanic complex. MA Thesis, Middletown, Connecticut, Wesleyan University, p 207
Davidson JP, Dungan MA, Ferguson KM, Colucci MT (1987) Crust-magma interactions and the evolution of arc magmas: the San Pedro-Pellado volcanic complex, southern Chilean Andes. Geology 15(5):443–446
Davidson JP, Ferguson KM, Colucci MT, Dungan MA (1988) The origin and evolution of magmas from the San Pedro-Pellado volcanic complex, S. Chile: multicomponent sources and open system evolution. Contr Mineral Petrol 100(4):429–445
Delpino D, Bermúdez A (1993) La actividad del volcán Copahue durante 1992. Erupción con emisión de azufre piroclástico. XII Congreso Geológico Argentino, Mendoza, Argentina, vol 1, pp 292–301
Delpino D, Bermúdez A (2002) La erupción del volcán Copahue del año 2000. Impacto social y al medio natural. XXV Congreso Geológico Argentino, Calatafe, Argentina, pp 365–370
deMoor JM (2003) The magmatic evolution of Caviahue caldera: Implications for subduction processes and caldera formation. MA Thesis, Middletown, Connecticut, Wesleyan University, p 205
Diez Rodríguez A, Introcaso A (1986) Perfil transcontinental sudamericano en el paralelo 39 S. Geoacta 13(2):179–201
Dragicevic M, Kausel E, Lomintz C, Meirnardus H, Silva L (1961) Levantamiento gravimetrito de Chile. Anales de la Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, vol 18, pp 221–242
Engdahl ER, van der Hilst R, Buland R (1998) Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull Seismol Soc Am 88(3):722–743
Fehn U, Snyder G, Varekamp JC (2004) Detection of recycled marine sediment components in crater lake fluids using 129I. J Volc Geotherm. Res 115:451–460
Folguera A, Ramos V (2000) Control estructural del volcán Copahue (38 S-71 O): implicancias tectónicas para el arco volcánico cuaternario (36-39): Rev As Geol Arg 53(3):229–244
Folguera A, Introcaso A, Gimenez M, Ruiz F, Martinez P, Tunstall C, Garcia Morabito E, Ramos VA (2007) Crustal attenuation in the Southern Andean retroarc (38°–39°30′S) determined from tectonic and gravimetric studies: The Lonco-Luán asthenospheric anomaly. Tectonophysics 439:129–147
Folguera A, Bottesi G, Zapata T, Ramos VA (2008) Crustal collapse in the Andean backarc since 2 Ma: Tromen volcanic plateau, Southern Central Andes (36°40′-37°30′S). Tectonophysics 459:140–160
Folguera A, Alasonati Tasarova Z, Gotze HJ, Rojas Vera E, Gimenez M, Ramos V (2012) Retroarc extension in the last 6 Ma in the South-Central Andes (36°S–40°S) evaluated through a 3-D gravity modelling. J South Am Earth Sci 40:23–37
Garcia Morabito E, Gotze HJ, Ramos VA (2011) Tertiary tectonics of the Patagonian Andes retro-arc area between 38°15′ and 40°S latitude. Tectonophysics 499:1–21
Gorton MP, Schandl ES (2000) From continents to island arcs: a geochemical index of tectonic setting for arc-related and within-plate felsic to intermediate volcanic rocks. Canadian Mineralogist 38:1065–1073
Goss A (2001) Magmatic evolution of Volcan Copahue: Neuquen, Argentina. MA Thesis, Middletown, Connecticut, Wesleyan University
Herron E (1981) Chile Margin near lat 38°S: evidence for a genetic relationship between continental and marine geologic features or a case of curious coincidences? Geol Soc Am Mem 154:755–760
Hesse A (2007) Back arc basalts from the Loncopue Graben, Province Neuquen, Argentina (38–39°S). MA thesis, Wesleyan University, Middletown CT, p 213
Hickey RL, Frey FA, Gerlach DC, Lopez-Escobar L (1986) Multiple sources for basaltic arc rocks from the southern volcanic zone of the Andes (34–41°S): trace element and isotopic evidence for contributions from subducted oceanic crust, mantle, and continental crust. J Geophys Res 91(B6):5963–5983
Hickey-Vargas R (1991) Andean magma; peeled or MASHed? Nature 350:381–382
Hickey-Vargas R, Moreno Roa H, Lopez-Escobar L, Frey FA (1989) Geochemical variations in Andean basaltic and silicic lavas from the Villarrica- Lanin volcanic chain (39.5°S); an evaluation of source heterogeneity, fractional crystallization and crustal assimilation. Contr Mineral Petrol 103:361–386
Hickey-Vargas R, Sun M, Lopez-Escobar L, Moreno-Roa H, Reagan MK, Morris JD, Ryan JG (2002) Multiple subduction components in the mantle wedge: evidence from eruptive centers in the Central Southern volcanic zone. Geology 30:199–202
Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of Central Chile. Contr Mineral Petrol 98(4):455–489
Hilton DR, Fischer TP, Marty B (2002) Noble gases and volatile recycling at subduction zones. Rev Mineral Geochem 47(1):319–370
Ibáñez JM, Del Pezzo E, Bengoa C, Caselli A, Badi G, Almendros J (2008) Volcanic tremor and local earthquakes at Copahue volcanic complex, Southern Andes, Argentina. J Volcanol Geotherm Res 174:284–294
Jacques G, Hoernle K, Gill J, Hauff F, Wehrmann H, Garbe-Schonberg D, van den Bogaard P, Bindeman I, Lara LE (2013) Across-arc geochemical variations in the Southern Volcanic Zone, Chile (34.5–38.0°S): constraints on mantle wedge and slab input compositions. Geochim Cosmochim Acta 123:218–243
Jacques G, Hoernle K, Gill J, Wehrmann H, Bindeman I, Lara LE (2014) Geochemical variations in the Central Southern Volcanic Zone, Chile (38-43°S): the role of fluids in generating arc magmas. Chem Geol 371:27–45
Johnson MC, Plank T (1999) Dehydration and melting experiments constrain the fate of subducted sediments. Geochem Geophys Geosys 1. doi:10.1029/1999GC000014
Jordan TE, Isacks BL, Allmendinger RW, Brewer JA, Ramos VA, Ando CJ (1983) Andean tectonics related to geometry of subducted Nazca plate. Geol Soc Am Bull 94(3):341–361
Kay SM, Maksaev V, Moscoso R, Mpodozis C, Nasi C (1987) Probing the evolving Andean Lithosphere: mid-late tertiary magmatism in Chile (29°–30°30′S) over the modern zone of subhorizontal subduction. J Geophys Res 92(B7):6173–6189
Kay SM, Gorring M, Ramos VA (2004) Magmatic sources, setting and causes of Eocene to recent Patagonian plateau magmatism (36° to 52°S latitude). Rev Asoc Geol Argent 59:556–568
Kay SM, Burns WM, Copeland P, Mancilla O (2006) Upper Cretaceous to Holocene magmatism and evidence for transient Miocene shallowing of the Andean subduction zone under the northern Neuquén Basin. Geol Soc Am 407:19
Kilian R, Behrmann JH (2003) Geochemical constraints on the sources of Southern Chile Trench sediments and their recycling in arc magmas of the Southern Andes. J Geol Soc London 160:57–70
Labanieh S, Chauvel C, Germa A, Quidelleur X, Lewin E (2010) Isotopic hyperbolas constrain sources and processes under the Lesser Antilles arc. Earth Planet Sci Lett 298:35–46
Le Bas MJ, Le Maitre RW, Woolley AR (1991) The construction of the Total Alkali-Silica chemical classification of volcanic rocks. Contrib Mineral Petrol 46:1–22
Linares E, Ostera HA, Mas L (1999) Cronología potasio-argón del Complejo Efusivo Copahue-Caviahue, Provincia de Neuquen. Rev As Geol Arg 54(3):240–247
Mazzoni L, Licitra DT (2000) Significado estratigráfico y volcanológico de depósitos de flujos piroclásticos neógenos con composición intermedia en la zona del lago Caviahue, Provincia del Neuquén. Rev As Geol Arg 55(3):247–249
McDonough WF, Sun SS (1995) Composition of the Earth. Chem Geol 120:223–253
Melnick D, Folguera A, Ramos VA (2006) Structural control on arc volcanism: the Copahue-Agrio complex, South-Central Andes (37°50′S). J. South Am. Earth Sci. 22:66–88
Merrill M (2003) Petrogenesis of the Caviahue caldera. MA Thesis, Middletown, Connecticut, Wesleyan University
Moreno H, Thiele R, Lahsen A, Vareta J, López L, Vergara M (1986) Geocronología de rocas volcánicas cuaternarias en los Andes del Sur entre las latitudes 37 y 38pS. Chile. Rev As Geol Arg 15(3–4):297–299
Muñoz BJ, Stern CR (1988) The quaternary volcanic belt of the southern continental margin of South America: Transverse structural and petrochemical variations across the segment between 38°S and 39°S. J South Am Earth Sci 1(2):147–161
Muñoz JB, Stern CR (1989) Alkaline magmatism within the segment 38–39 S of the Plio-Quaternary volcanic belt of the southern South American continental margin. J Geophys Res 94(B4):4545–4560
Naranjo JA, Polanco E (2004) The 2000 AD eruption of Copahue volcano Southern Andes. Rev Geol Chile 31(2):279–292
Niermeyer H, Muñoz J (1983) Geología de la Hoja Laguna de La Laja, Región del Biobío. Servicio Nacional de Geología y Minería, Carta Geológica de Chile
Orts DL, Folguera A, Encinas A, Ramos M, Tobal J, Ramos VA (2012) Tectonic development of the North Patagonian Andes and their related Miocene foreland basin (41°30′-43°S). Tectonics 31(TC3012). doi:10.1029/2011TC003084
Pardo-Casas F, Molnar P (1987) Relative motion of the Nazca (Farallon) and South American plates since Late Cretaceous time. Tectonics 6(3):233–248
Pearce JA (1982) Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed), Andesites: orogenic andesites and related Rocks. Wiley, Chichester, pp 525–548
Pesce A (1989) Evolución volcano-tectónica del complejo efusivo Copahue-Caviahue y su modelo geotérmico preliminar. Rev As Geol Arg 44(1–4)307–327
Pioli L, Erlund E, Johnson E, Cashman K, Wallace P, Rosi M, Delgado Granados H (2008) Explosive dynamics of violent Strombolian eruptions: the eruption of Parícutin Volcano 1943–1952 (Mexico). Earth Plan Sc Lett 271:359–368
Plank T (2005) Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents. J Petrol 46:921–944
Rabassa J, Clapperton CM (1990) Quaternary glaciations of the southern Andes. Quat Scie Rev 9(2):153–174
Ramos V (1978) Relatório: Estructura, Geológia y Recursos Naturales del Neuquén: Buenos Aires. In: Proceedings Asociación Geológica Argentina, VII Congreso Geológico Argentino, pp 99–118
Rea JC (2009) The petrology and geochemistry of volcan Callaqui, Chile. MA Thesis, Wesleyan University, Middletown, CT, USA, p 162
Rudnick RL, Gao S (2003) Composition of the continental crust. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 3. Elsevier, Amsterdam, pp 1–64
Søager N, Holm PM, Llambías EJ (2013) Payenia volcanic province, southern Mendoza, Argentina: OIB mantle upwelling in a backarc environment. Chem Geol 349–350:36–53
Suarez M, de la Cruz R (1998) Hoja Curacautin (38°–39°). Servicio Nacional de Geologia y Mineria de Chile, Mapa escala 1:250,000, p 105
Stern CR (1991) Role of subduction erosion in the generation of Andean magmas. Geology 19(1):8–81
Swift SA, Carr MJ (1974) The segmented nature of the Chilean seismic zone. Phys Earth Planet Inter 9(3):183–191
Tanaka T, Togashi S, Kamioka H, Amakawa H, Kagami H, Hamamoto T, Yuhara M, Orihashi Y, Yoneda S, Shimizu H, Kunimaru T, Takahashi K, Yanagi T, Nakano T, Fujimaki H, Shinjo R, Asahara Y, Tanimizu M, Dragusanu C (2000) JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium, Chem Geol 168:279–281
Tebbens S, Cande S, Kovacs L, Parra J, LaBrecque J, Vergara H (1997) The Chile ridge: a tectonic framework. J Geophys Res 102(B6):12035–12059
Todd E (2005) Geochemical evolution of pre-caldera magmas at Caviahue caldera, Neuquén province, Argentina. MA Thesis, Flagstaff, Arizona, Northern Arizona University, p 252
Todd E, Ort MH (2012) Variable sources and differentiation of lavas from the Copahue-Caviahue eruptive complex, Neuquen Argentina. Fall meeting, AGU, San Francisco, USA, Abstract V11D, p 2804
Todd E, Gill JB, Wysoczanski RJ, Hergt JM, Wright IC, Leybourne MI, Mortimer N (2011) Hf isotopic evidence for small-scale heterogeneity in the mode of mantle wedge enrichment: Southern Havre Trough and South Fiji Basin back-arcs. Geochem Geophys Geosys 12(9):34
Varekamp JC, Ouimette AP, Herman SW, Bermúdez A, Delpino D (2001) Hydrothermal element fluxes from Copahue, Argentina: a “beehive” volcano in turmoil. Geology 29(11):1059–1062
Varekamp JC, deMoor JM, Merrill MD, Colvin AS, Goss AR, Vroon PZ, Hilton DR (2006) Geochemistry and isotopic characteristics of the Caviahue-Copahue volcanic complex, Province of Neuquén, Argentina. Geol Soc Am 407:317–342
Varekamp JC, Ouimette A, Herman S, Flynn K, Bermúdez A, Delpino D (2009) Naturally acid waters from Copahue volcano Argentina. Appl Geochem 24(2):208–220
Varekamp JC, Hesse A, Mandeville C (2010) Back-arc basalts from the Loncopue graben (Province of Neuquen, Argentina). J Volcanol Geotherm Res 197(1):313–328
Velez ML, Euillades P, Caselli A, Blanco M, Díaz JM (2011) Deformation of Copahue volcano: inversion of InSAR data using a genetic algorithm. J Volcanol Geotherm Res 202:117–126
Vermeesch P (2006) Tectonic discrimination diagrams revisited. Geochem Geophys Geosys 7(Q06017). doi:10.1029/2005GC001092
Völker D, Kutterolf S, Wehrmann H (2011) Comparative mass balance of volcanic edifices at the southern volcanic zone of the Andes between 33°S and 46°S. J Volcanol Geotherm Res 205(3):114–129
Winter JD (2001) Introduction to igneous and metamorphic petrology. Prentice and Hall, Englewood Cliffs, p 699
Zareski JE (2014) An east-west transect through the Andes at 35-39°S. MA thesis Wesleyan Univ, Middletown CT, p 248
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Varekamp, J.C., Zareski, J.E., Camfield, L.M., Todd, E. (2016). Copahue Volcano and Its Regional Magmatic Setting. In: Tassi, F., Vaselli, O., Caselli, A. (eds) Copahue Volcano. Active Volcanoes of the World. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48005-2_5
Download citation
DOI: https://doi.org/10.1007/978-3-662-48005-2_5
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-48004-5
Online ISBN: 978-3-662-48005-2
eBook Packages: Earth and Environmental ScienceEarth and Environmental Science (R0)