Artificial Satellite Heat Pipe Design Using Harmony Search

  • Zong Woo Geem
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 382)


The design of an artificial satellite requires an optimization of multiple objectives with respect to performance, reliability, and weight. In order to consider these objectives simultaneously, multi-objective optimization technique can be considered. In this chapter, a multi-objective method considering both thermal conductance and heat pipe mass is explained for the design of a satellite heat pipe. This method has two steps: at first, each single objective function is optimized; then multi-objective function, which is the sum of individual error between current function value and optimal value in terms of single objective, is minimized. Here, the multi-objective function, representing thermal conductance and heat pipe mass, has five design parameters such as 1) length of conduction fin, 2) cutting length of adhesive attached area, 3) thickness of fin, 4) adhesive thickness, and 5) operation temperature of the heat pipe. Study results showed that the approach using harmony search found better solution than traditional calculus-based algorithm, BFGS.


Artificial satellite heat pipe Harmony search Optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Goldberg, D.E.: Genetic Algorithms in Search Optimization and Machine Learning. Addison Wesley, MA (1989)zbMATHGoogle Scholar
  2. 2.
    Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by Simulated Annealing. Science 220, 671–680 (1983)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Glover, F.: Heuristic for Integer Programming using Surrogate Constraints. Decision Sci. 8, 156–166 (1977)CrossRefGoogle Scholar
  4. 4.
    Dorigo, M., Maniezzo, V., Colorni, A.: The Ant System: Optimization by a Colony of Cooperating Agents. IEEE Transactions on Systems, Man, and Cybernetics-Part B 26, 29–41 (1996)CrossRefGoogle Scholar
  5. 5.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the IEEE International Joint Conference on Neural Networks, pp. 1942−1948 (1995)Google Scholar
  6. 6.
    Geem, Z.W.: Novel derivative of harmony search algorithm for discrete design variables. Appl. Math. Comput. 199, 223–230 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Geem, Z.W. (ed.): Music-Inspired Harmony Search Algorithm. SCI, vol. 191. Springer, Heidelberg (2009)Google Scholar
  8. 7.
    Geem, Z.W. (ed.): Recent Advances in Harmony Search Algorithm. SCI, vol. 270. Springer, Heidelberg (2009)Google Scholar
  9. 9.
    Geem, Z.W. (ed.): Harmony Search Algo. for Structural Design Optimization. SCI, vol. 239. Springer, Heidelberg (2009)Google Scholar
  10. 10.
    Mahdavi, M., Fesanghary, M., Damangir, E.: An improved harmony search algorithm for solving optimization problems. Appl. Math. Comput. 188, 1567–1579 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Das, S., Mukhopadhyay, A., Roy, A., Abraham, A., Panigrahi, B.K.: Exploratory Power of the Harmony Search Algorithm: Analysis and Improvements for Global Numerical Optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 41, 89–106 (2011)CrossRefGoogle Scholar
  12. 12.
    Geem, Z.W.: Optimal cost design of water distribution networks using harmony search. Eng. Optimiz. 38, 259–280 (2006)CrossRefGoogle Scholar
  13. 13.
    Wang, C.M., Huang, Y.F.: Self-adaptive harmony search algorithm for optimization. Expert Syst. Appl. 37, 2826–2837 (2010)CrossRefGoogle Scholar
  14. 14.
    Hasancebi, O., Erdal, F., Saka, M.P.: Adaptive Harmony Search Method for Structural Optimization. J. Struct. Eng.-ASCE 136, 419–431 (2010)CrossRefGoogle Scholar
  15. 15.
    Geem, Z.W., Sim, K.B.: Parameter-Setting-Free Harmony Search Algorithm. Appl. Math. Comput. 217, 3881–3889 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Geem, Z.W., Cho, Y.-H.: Optimal Design of Water Distribution Networks Using Parameter-Setting-Free Harmony Search for Two Major Parameters. J. Water Res. Pl-ASCE 137, 377–380 (2011)CrossRefGoogle Scholar
  17. 17.
    Geem, Z.W.: Parameter Estimation of the Nonlinear Muskingum Model Using Parameter-Setting-Free Harmony Search. Journal of Hydrologic Engineering – ASCE 16, 684–688 (2011)CrossRefGoogle Scholar
  18. 18.
    Degertekin, S.: Optimum design of steel frames using harmony search algorithm. Struct. Multidiscp. O. 36, 393–401 (2008)CrossRefGoogle Scholar
  19. 19.
    Geem, Z.W.: Improved harmony search from ensemble of music players. Lecture Notes in Artificial Intelligence 4251, 86–93 (2006)Google Scholar
  20. 20.
    Rajesh, V.G., Ravindran, K.P.: Optimum Heat Pipe Design: A Nonlinear Programming Approach. International Communications in Heat and Mass Transfer 24, 371–380 (1997)CrossRefGoogle Scholar
  21. 21.
    de Sousa, F.L., Vlassov, V., Ramos, F.M.: Generalized Extremal Optimization: An Application in Heat Pipe Design. Appl. Math. Model. 28, 911–931 (2004)zbMATHCrossRefGoogle Scholar
  22. 22.
    Huband, S., Barone, L., While, L., Hingston, P.: A scalable multi-objective test problem toolkit. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 280–295. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Geem, Z.W., Hwangbo, H.: Application of harmony search to multi-objective optimization for satellite heat pipe design. In: Proceedings of US-Korea Conference on Science, Technology, & Entrepreneurship (UKC 2006), CD-ROM (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Energy ITGachon UniversitySeongnam-siSouth Korea

Personalised recommendations