Advertisement

Modified Harmony Search Applied to Reliability Optimization of Complex Systems

  • Gutha Jaya Krishna
  • Vadlamani Ravi
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 382)

Abstract

This paper proposes an Improved Modified Harmony Search Algorithm with constraint handling with application to redundancy allocation problems in reliability engineering. The performance of Improved Modified Harmony Search is being compared with that of the original Harmony Search, Modified Great Deluge Algorithm, Ant Colony Optimization, Improved Non-Equilibrium Simulated Annealing and Simulated Annealing. It is observed that Improved Modified Harmony Search requires less number of function evaluations compared to others.

Keywords

Constrained optimization Meta-heuristic Modified harmony search algorithm Reliability redundancy allocation problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Choudhuri, R., Ravi, V., Mahesh Kumar, Y.: A Hybrid Harmony Search and Modified Great Deluge Algorithm for Unconstrained Optimization. International Journal of Comp. Intelligence Research 6(4), 755–761 (2010)Google Scholar
  2. 2.
    Dueck, G., Scheur, T.: Threshold Accepting: A General Purpose Optimization Algorithm appearing Superior to Simulated Annealing. J. Comput. Phys. 90, 161–175 (1990)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Ravi, V., Murthy, B.S.N., Reddy, P.J.: Non-equilibrium simulated annealing-algorithm applied to reliability optimization of complex systems. IEEE Transanctions on Reliability 46, 233–239 (1997)CrossRefGoogle Scholar
  4. 4.
    Ravi, V.: Optimization of Complex System Reliability by a Modified Great Deluge Algorithm. Asia-Pacific Journal of Operational Research 21(4), 487–497 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Luus, R.: Optimization of system reliability by a new nonlinear integer programming procedure. IEEE Transactions on Reliability 24, 14–16 (1975)CrossRefGoogle Scholar
  6. 6.
    Shelokar, P.S., Jayaraman, V.K., Kulkarni, B.D.: Ant algorithm for single and multi objective reliability optimization problems. Qual. Reliab. Eng. Int. 18, 497–514 (2002)CrossRefGoogle Scholar
  7. 7.
    Tillman, F.A., Hwang, C.L., Kuo, W.: Optimization of System Reliability. Marcel Dekker, Inc., NewYork (1980)Google Scholar
  8. 8.
    Mohan, C., Shanker, K.: Reliability optimization of complex systems using random search techniques. Microelectronics and Reliability 28, 513–518 (1988)CrossRefGoogle Scholar
  9. 9.
    Michel, G., Jean-Yves, P.: Handbook of Metaheuristics. Springer US (2002)Google Scholar
  10. 10.
    Geem, Z., Kim, J., Loganathan, G.: A new heuristic optimization algorithm: harmony search. Simulation 76, 60–68 (2001)CrossRefGoogle Scholar
  11. 11.
    Maheshkumar, Y., Ravi, V.: A modified harmony search threshold accepting hybrid optimization algorithm. In: Sombattheera, C., Agarwal, A., Udgata, S.K., Lavangnananda, K. (eds.) MIWAI 2011. LNCS, vol. 7080, pp. 298–308. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Pardalos, P.M., Edwin, R.H.: Handbook of Global Optimization, vol. 2. Springer US (2002)Google Scholar
  13. 13.
    Harish, G., Sharma, S.P.: Reliability-Redundancy Allocation Problem of Pharmaceutical Plant. Journal of Engineering Science and Technology 8(2), 190–198 (2013)Google Scholar
  14. 14.
    Kirkpatrick, S., Gelatt Jr, C.D., Vecchi, M.P.: Optimization by Simulated Annealing. Science 220(4598), 671–680 (1983)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. Evolutionary. EEE Transactions on Computation 1(1), 67–82 (1997)CrossRefGoogle Scholar
  16. 16.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks IV, pp. 1942−1948Google Scholar
  17. 17.
    Glover, F.: Tabu Search - Part 1. ORSA Journal on Computing 1(2), 190–206 (1989)zbMATHCrossRefGoogle Scholar
  18. 18.
    Dorigo, M., Gambardella, L.M.: Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem. IEEE Transactions on Evolutionary Computation 1(1), 53–66 (1997)CrossRefGoogle Scholar
  19. 19.
    Srinivas, M.: Rangaiah: Differential Evolution with Tabu list for Global Optimization and its Application to Phase Equilibrium and Parameter Estimation Problems. Industrial and Engineering Chemistry Research 46, 3410–3421 (2007)CrossRefGoogle Scholar
  20. 20.
    Chauhan, N., Ravi, V.: Differential Evolution and Threshold Accepting Hybrid Algorithm for Unconstrained Optimization. International Journal of Bio-Inspired Computation 2, 169–182 (2010)CrossRefGoogle Scholar
  21. 21.
    Li, H., Li, L.: A novel hybrid particle swarm optimization algorithm combined with harmony search for higher dimensional optimization problems. In: International Conference on Intelligent Pervasive Computing, Jeju Island, Korea (2007)Google Scholar
  22. 22.
    Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press (1998)Google Scholar
  23. 23.
    Gao, X.Z., Wang, X., Ovaska, J.: Uni-Modal and Multi Modal optimization using modified harmony search methods. IJICIC 5(10(A)), 2985–2996 (2009)Google Scholar
  24. 24.
    Kaveh, A., Talatahari, S.: PSO, ant colony strategy and harmony search scheme hybridized for optimization of truss structures. Computers and Structures 87, 267–283 (2009)CrossRefGoogle Scholar
  25. 25.
    Ravi, V., Reddy, P.J., Zimmermann, H.J.: Fuzzy global optimization of complex system reliability. IEEE Trans. Fuzzy Syst. 8, 241–248 (2000)CrossRefGoogle Scholar
  26. 26.
    Geem, Z.W. (ed.): Harmony Search Alg. for Structural Design Optimization. SCI, vol. 239. Springer, Heidelberg (2009)Google Scholar
  27. 27.
    Kusakci, A.O., Mehmet, C.: Constrained Optimization with Evolutionary Algorithms: A Comprehensive Review. Southeast Europe Journal of Soft Computing 1(2) (2012)Google Scholar
  28. 28.
    Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute for Development and Research in Banking TechnologyMasab Tank, HyderabadIndia
  2. 2.School of Computer & Information SciencesUniversity of HyderabadHyderabadIndia

Personalised recommendations