Skip to main content

Genomic Survey of the Hidden Components of the B. rapa Genome

  • Chapter
  • First Online:
The Brassica rapa Genome

Abstract

The sequencing of the Brassica rapa genome has enabled better understanding of its structure and evolution, and created numerous opportunities for exploration of genome function and breeding applications. Nevertheless, the currently available completed genome sequences are estimated to cover only about 60 % of the genome, while the remaining 40 % is unassembled mainly due to the highly repetitive nature of this portion of the genome. Elucidation of the nature and distribution of repeat elements in the context of the entire genome would enhance our understanding of their role in genome structure, function, and evolution. In this chapter, we review the genomic distribution, characterization and evolutionary implications of currently identified repeat elements comprising the ‘hidden’ portion of the B. rapa genome. Low-coverage whole-genome sequence (WGS) was used to survey the major genomic repeats and their proportion in the B. rapa genome. Coupling this with molecular cytogenetics, we characterized the abundance and genomic distribution of seven major repeats, namely centromeric tandem repeats 1 and 2, centromeric retrotransposons, pericentromeric retrotransposons, 5S rDNA, 45S rDNA, and subtelomeric tandem repeats. These repeats accounted for approximately 20 % of the B. rapa genome, which is much more than the <1 % covered by repeats in the currently available genome assembly. We also compared their distributions among different B. rapa accessions and in the close relative Brassica oleracea, for better understanding of the plasticity of the Brassica genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Biémont C (2010) A brief history of the status of transposable elements: from junk DNA to major players in evolution. Genetics 186(4):1085–1093

    Google Scholar 

  • Biémont C, Vieira C (2006) Genetics: junk DNA as an evolutionary force. Nature 443(7111):521–524

    Google Scholar 

  • Brenchley R, Spannagl M, Pfeifer M, Barker GL, D’Amore R et al (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491(7426):705–710

    Google Scholar 

  • Cabo S, Carvalho A, Martin A, Lima-Brito J (2014) Structural rearrangements detected in newly-formed hexaploid tritordeum after three sequential FISH experiments with repetitive DNA sequences. J Genet 93(1):183–188

    Article  PubMed  Google Scholar 

  • Charlesworth B, Sniegowski P, Stephan W (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371(6494):215–220

    Google Scholar 

  • Choi HI, Waminal NE, Park HM, Kim NH, Choi BS et al (2014) Major repeat components covering one-third of the ginseng (Panax ginseng C.A. Meyer) genome and evidence for allotetraploidy. Plant J 77(6):906–916

    Article  CAS  PubMed  Google Scholar 

  • Cohen S, Yacobi K, Segal D (2003) Extrachromosomal circular DNA of tandemly repeated genomic sequences in Drosophila. Genome Res 13(6A):1133–1145

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Doolittle WF, Sapienza C (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature 284(5757):601–603

    Google Scholar 

  • Edwards D, Batley J (2010) Plant genome sequencing: applications for crop improvement. Plant Biotechnol J 8(1):2–9

    Article  CAS  PubMed  Google Scholar 

  • Goodier JL, Cheung LE, Kazazian HH Jr (2012) MOV10 RNA Helicase is a potent inhibitor of retrotransposition in cells. PLoS Genet 8(10):e1002941

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hall SE, Luo S, Hall AE, Preuss D (2005) Differential rates of local and global homogenization in centromere satellites from Arabidopsis relatives. Genetics 170(4):1913–1927

    Google Scholar 

  • Hardman N (1986) Structure and function of repetitive DNA in eukaryotes. Biochem J 234(1):1–11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Harrison GE, Heslop-Harrison JS (1995) Centromeric repetitive DNA sequences in the genus Brassica. Theor Appl Genet 90(2):157–165

    Google Scholar 

  • Hawkins JS, Kim H, Nason JD, Wing RA, Wendel JF (2006) Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res 16(10):1252–1261

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hershkovitz MA, Zimmer EA (1996) Conservation patterns in angiosperm rDNA ITS2 sequences. Nucl Acids Res 24(15):2857–2867

    Google Scholar 

  • Huang S, Li R, Zhang Z, Li L, Gu X et al (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41(12):1275–1281

    Article  CAS  PubMed  Google Scholar 

  • Jakse J, Meyer JD, Suzuki G, McCallum J, Cheung F et al (2008) Pilot sequencing of onion genomic DNA reveals fragments of transposable elements, low gene densities, and significant gene enrichment after methyl filtration. Mol Genet Genome 280(4):287–292

    Google Scholar 

  • Jiang J (2013) Centromere evolution. In: Jiang J, Birchler JA (eds) Plant centromere biology. Wiley, Oxford, pp 159–168

    Google Scholar 

  • Jiang J, Birchler JA, Parrott WA, Kelly Dawe R (2003) A molecular view of plant centromeres. Trends Plant Sci 8(12):570–575

    Google Scholar 

  • Johnston JS, Pepper AE, Hall AE, Chen ZJ, Hodnett G et al (2005) Evolution of genome size in Brassicaceae. Ann Bot 95(1):229–235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kato A, Lamb JC, Birchler JA (2004) Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc Natl Acad Sci USA 101(37):13554–13559

    Google Scholar 

  • Khrustaleva LI, Kik C (2001) Localization of single-copy T-DNA insertion in transgenic shallots (Allium cepa) by using ultra-sensitive FISH with tyramide signal amplification. Plant J 25(6):699–707

    Article  CAS  PubMed  Google Scholar 

  • Kim K, Lee SC, Lee J, Lee HO, Choi BS, Joh JH, Kim NH, Park HS, Yang TJ (2015) Comprehensive survey of genetic diversity in chloroplast genomes and 45S nrDNAs within Panax ginseng species. Plos One (in press)

    Google Scholar 

  • Koo DH, Plaha P, Lim YP, Hur Y, Bang JW (2004) A high-resolution karyotype of Brassica rapa ssp. pekinensis revealed by pachytene analysis and multicolor fluorescence in situ hybridization. Theor Appl Genet 109(7):1346–1352

    Article  PubMed  Google Scholar 

  • Koo DH, Hong CP, Batley J, Chung YS, Edwards D et al (2011) Rapid divergence of repetitive DNAs in Brassica relatives. Genomics 97(3):173–185

    Google Scholar 

  • Lamb JC, Danilova T, Bauer MJ, Meyer JM, Holland JJ et al (2007a) Single-gene detection and karyotyping using small-target fluorescence in situ hybridization on maize somatic chromosomes. Genetics 175(3):1047–1058

    Google Scholar 

  • Lamb JC, Meyer JM, Corcoran B, Kato A, Han F et al (2007b) Distinct chromosomal distributions of highly repetitive sequences in maize. Chrom Res 15(1):33–49

    Google Scholar 

  • Lee HR, Zhang W, Langdon T, Jin W, Yan H et al (2005) Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species. Proc Natl Acad Sci USA 102(33):11793–11798

    Google Scholar 

  • Lim KY, Kovarik A, Matyasek R, Bezdek M, Lichtenstein CP et al (2000) Gene conversion of ribosomal DNA in Nicotiana tabacum is associated with undermethylated, decondensed and probably active gene units. Chromosoma 109(3):161–172

    Google Scholar 

  • Lim KB, de Jong H, Yang TJ, Park JY, Kwon SJ et al (2005) Characterization of rDNAs and tandem repeats in the heterochromatin of Brassicarapa. Mol Cells 19(3):436–444

    Google Scholar 

  • Lim KB, Yang TJ, Hwang YJ, Kim JS, Park JY et al (2007) Characterization of the centromere and peri-centromere retrotransposons in Brassicarapa and their distribution in related Brassica species. Plant J 49(2):173–183

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Liu Y, Yang X, Tong C, Edwards D et al (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun 5. doi:10.1038/ncomms4930

  • Macas J, Neumann P, Navratilova A (2007) Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genome 8:427

    Article  Google Scholar 

  • Martins C, Wasko AP (2004) Organization and evolution of 5S ribosomal DNA in the fish genome. In: Williams CR (ed) Focus in genome research. Nova Science Publishers, Hauppauge, pp 335–363

    Google Scholar 

  • Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11(1):31–46

    Article  CAS  PubMed  Google Scholar 

  • Michael TP, Jackson S (2013) The first 50 plant genomes. Plant Genome 6(2)

    Google Scholar 

  • Neumann P, Navratilova A, Koblizkova A, Kejnovsky E, Hribova E et al (2011) Plant centromeric retrotransposons: a structural and cytogenetic perspective. Mob DNA 2(1):4

    Google Scholar 

  • Nowak R (1994) Mining treasures from ‘junk DNA’. Science 263(5147):608–610

    Google Scholar 

  • Pagel M, Johnstone RA (1992) Variation across species in the size of the nuclear genome supports the junk-DNA explanation for the C-value paradox. Proc Roy Soc Lond Sr B: Biol Sci 249(1325):119–124

    Google Scholar 

  • Pardue ML, DeBaryshe PG (2003) Retrotransposons provide an evolutionarily robust non-telomerase mechanism to maintain telomeres. Annu Rev Genet 37:485–511

    Article  CAS  PubMed  Google Scholar 

  • Park HM, JeonEJ WaminalNE, ShinKS KweonSJ et al (2010) Detectioin of transgenes in three genetically modified rice lines by fluorescence in situ hybridization. Genes Genomics 32:527–531

    Article  CAS  Google Scholar 

  • Roa F, Guerra M (2012) Distribution of 45S rDNA sites in chromosomes of plants: structural and evolutionary implications. BMC Evol Biol 12(1):225

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sampath P, Lee SC, Lee J, Izzah NK, Choi BS et al (2013) Characterization of a new high copy Stowaway family MITE, BRAMI-1 in Brassica genome. BMC Plant Biol 13:56

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sampath P, Murukarthick J, Izzah NK, Lee J, Choi HI et al (2014) Genome-wide comparative analysis of 20 miniature inverted-repeat transposable element families in Brassica rapa and B. oleracea. PLoS ONE 9(4):e94499

    Article  PubMed Central  PubMed  Google Scholar 

  • Santos AP, Wegel E, Allen GC, Thompson WF, Stoger E et al (2006) In situ methods to localize transgenes and transcripts in interphase nuclei: a tool for transgenic plant research. Plant Methods 2:18

    Google Scholar 

  • Sarilar V, Marmagne A, Brabant P, Joets J, Alix K (2011) BraSto, a Stowaway MITE from Brassica: recently active copies preferentially accumulate in the gene space. Plant Mol Biol 77(1–2):59–75

    Article  CAS  PubMed  Google Scholar 

  • Schadt EE, Turner S, Kasarskis A (2010) A window into third-generation sequencing. Hum Mol Genet 19(R2):R227–R240

    Article  CAS  PubMed  Google Scholar 

  • Schatz MC, Witkowski J, McCombie WR (2012) Current challenges in de novo plant genome sequencing and assembly. Genome Biol 13(4):243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shapiro JA, von Sternberg R (2005) Why repetitive DNA is essential to genome function. Biol Rev Camb Philos Soc 80(2):227–250

    Article  PubMed  Google Scholar 

  • Suzuki G, Ogaki Y, Hokimoto N, Xiao L, Kikuchi-Taura A et al (2012) Random BAC FISH of monocot plants reveals differential distribution of repetitive DNA elements in small and large chromosome species. Plant Cell Rep 31(4):621–628

    Article  CAS  PubMed  Google Scholar 

  • Swaminathan K, Varala K, Hudson ME (2007) Global repeat discovery and estimation of genomic copy number in a large, complex genome using a high-throughput 454 sequence survey. BMC Genomics 8:132

    Article  PubMed Central  PubMed  Google Scholar 

  • Talbert PB, Henikoff S (2010) Centromeres convert but don’t cross. PLoS Biol 8(3):e1000326

    Article  PubMed Central  PubMed  Google Scholar 

  • van der Knaap E, Sanyal A, Jackson SA, Tanksley SD (2004) High-resolution fine mapping and fluorescence in situ hybridization analysis of sun, a locus controlling tomato fruit shape, reveals a region of the tomato genome prone to DNA rearrangements. Genetics 168(4):2127–2140

    Google Scholar 

  • Walsh JB (1987) Persistence of tandem arrays: implications for satellite and simple-sequence DNAs. Genetics 115(3):553–567

    Google Scholar 

  • Waminal N, Park HM, Ryu KB, Kim JH, Yang TJ et al (2012) Karyotype analysis of Panax ginseng C.A.Meyer, 1843 (Araliaceae) based on rDNA loci and DAPI band distribution. Comp Cytogenet 6(4):425–441

    Google Scholar 

  • Waminal NE, Ryu KB, Park BR, Kim HH (2014) Phylogeny of cucurbitaceae species in korea based on 5S rDNA non-transcribed spacer. Genes Genomics 36(1):57–64

    Google Scholar 

  • Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun JH, Bancroft I, Cheng F, Huang S, Li X, Hua W, Wang J, Wang X, Freeling M, Pires JC, Paterson AH, Chalhoub B, Wang B, Hayward A, Sharpe AG, Park BS, Weisshaar B, Liu B, Li B, Liu B, Tong C, Song C, Duran C, Peng C, Geng C, Koh C, Lin C, Edwards D, Mu D, Shen D, Soumpourou E, Li F, Fraser F, Conant G, Lassalle G, King GJ, Bonnema G, Tang H, Wang H, Belcram H, Zhou H, Hirakawa H, Abe H, Guo H, Wang H, Jin H, Parkin IA, Batley J, Kim JS, Just J, Li J, Xu J, Deng J, Kim JA, Li J, Yu J, Meng J, Wang J, Min J, Poulain J, Wang J, Hatakeyama K, Wu K, Wang L, Fang L, Trick M, Links MG, Zhao M, Jin M, Ramchiary N, Drou N, Berkman PJ, Cai Q, Huang Q, Li R, Tabata S, Cheng S, Zhang S, Zhang S, Huang S, Sato S, Sun S, Kwon SJ, Choi SR, Lee TH, Fan W, Zhao X, Tan X, Xu X, Wang Y, Qiu Y, Yin Y, Li Y, Du Y, Liao Y, Lim Y, Narusaka Y, Wang Y, Wang Z, Li Z, Wang Z, Xiong Z, Zhang Z, Brassica rapa C, Genome Sequencing Project (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43(10):1035–1039

    Google Scholar 

  • Wei L, Xiao M, An Z, Ma B, Mason AS, Qian W, Li J, Fu D (2013) New insights into nested long terminal repeat retrotransposons in Brassica species. Mol Plant 6(2):470–482

    Google Scholar 

  • Wolfgruber T K, Sharma A, Schneider KL, Albert PS, Koo D-H, Shi J, Gao Z, Han F, Lee H, Xu R, Allison J, Birchler JA, Jiang J, Dawe RK, Presting GG (2009) Maize centromere structure and evolution: sequence analysis of centromeres 2 and 5 reveals dynamic loci shaped primarily by retrotransposons. PLoS Genet 5(11):e1000743

    Google Scholar 

  • Xiong ZY, Pires JC (2011) Karyotype and identification of all homoeologous chromosomes of allopolyploid Brassica napus and Its diploid progenitors. Genetics 187(1):37–49

    Google Scholar 

  • Yu W, Lamb JC, Han F, Birchler JA (2007) Cytological visualization of DNA transposons and their transposition pattern in somatic cells of maize. Genetics 175(1):31–39

    Google Scholar 

Download references

Acknowledgments

This research was carried out with the support by Golden Seed Project (Center for Horticultural Seed Development, No. 213003-04-3-SB430), Ministry of Agriculture, Food and Rural Affairs (MAFRA), Ministry of Oceans and Fisheries (MOF), Rural Development Administration (RDA) and Korea Forest Service (KFS), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Jin Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Waminal, N.E., Perumal, S., Lim, KB., Park, BS., Kim, H.H., Yang, TJ. (2015). Genomic Survey of the Hidden Components of the B. rapa Genome. In: Wang, X., Kole, C. (eds) The Brassica rapa Genome. Compendium of Plant Genomes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47901-8_7

Download citation

Publish with us

Policies and ethics