Genomic Resources and Physical Mapping of the B. rapa Genome

  • Jeong-Hwan MunEmail author
  • Hee-Ju Yu
  • Beom-Seok Park
Part of the Compendium of Plant Genomes book series (CPG)


The genus Brassica includes the most extensively cultivated dicotyledonous vegetable crops worldwide. Investigation of the Brassica genome presents excellent challenges to study plant genome evolution and divergence of gene function associated with polyploidy and genome hybridization. Among the Brassica crops, Brassica rapa has been an ideal model for genomic studies on the Brassica species. B. rapa (AA genome) has a relatively compact diploid genome (529 Mb), compared to Brassica nigra (BB genome, 632 Mb) and Brassica oleracea (CC genome, 696 Mb). There is also a large collection of cultivars and a broad array of available genomic resources including five large-insert bacterial artificial chromosome (BAC) libraries providing 53-fold genome coverage, end sequences of approximately 146,000 BAC clones, >150,000 ESTs from 33 cDNA libraries, successful shotgun sequencing of 886 euchromatic region-tiling BACs, and a BAC-based physical map. These genomic resources provided fundamental basis of the genome sequencing project and contributed to successful assembly of the whole genome sequences.


Bacterial Artificial Chromosome Bacterial Artificial Chromosome Clone Bacterial Artificial Chromosome Library Brassica Species Brassica Crop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was carried out with the support by Golden Seed Project (Center for Horticultural Seed Development, No. 213003-04-3-SB430), Ministry of Agriculture, Food and Rural Affairs (MAFRA), Ministry of Oceans and Fisheries (MOF), Rural Development Administration (RDA) and Korea Forest Service (KFS), Republic of Korea.


  1. Ananiev EV, Phillips RL, Rines HW (1998) Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proc Natl Acad Sci USA 95:13073–13078Google Scholar
  2. Beilstein MA, Al-Shehbaz IA, Kellogg EA (2006) Brassicaceae phylogeny and trichome evolution. Am J Bot 93:607–619CrossRefPubMedGoogle Scholar
  3. Bowers JE, Chapman BA, Rong J, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438Google Scholar
  4. Chen M, Presting G, Barbazuk WB, Goicoechea JL, Blackmon B et al (2002) An integrated physical and genetic map of the rice genome. Plant Cell 14:537–545PubMedCentralCrossRefPubMedGoogle Scholar
  5. Copenhaver GP, Nickel K, Kuromori T, Benito MI, Kaul S et al (1999) Genetic definition and sequence analysis of Arabidopsis centromeres. Science 286:2468–2474Google Scholar
  6. Ding Y, Johnson MD, Chen WQ, Wong D, Chen YJ et al (2001) Five-color-based high-information content fingerprinting of bacterial artificial chromosome clones using type IIS restriction endonucleases. Genomics 74:142–154Google Scholar
  7. Dong X, Feng H, Xu M, Lee J, Kim Y et al (2013a) Comprehensive analysis of genic male sterility related genes in Brassica rapa using a newly developed Br300K oligomeric chip. PLoS One 8:e72178Google Scholar
  8. Dong X, Kim W, Lim Y-P, Kim Y-K, Hur Y (2013b) Ogura-CMS in Chinese cabbage (Brassica rapa ssp. pekinensis) causes delayed expression of many nuclear genes. Plant Sci 199–200:7–17Google Scholar
  9. Economic Research Service, USDA (2008) Vegetables and melons outlook.
  10. Gregory SG, Howell GR, Bentley DR (1997) Genome mapping by fluorescent fingerprinting. Genome Res 7:1162–1168PubMedCentralPubMedGoogle Scholar
  11. Harrison GE, Heslop-Harrison JS (1995) Centromeric repetitive DNA sequences in the genus Brassica. Theor Appl Genet 90:157–165CrossRefPubMedGoogle Scholar
  12. Johnston JS, Pepper AE, Hall AE, Chen ZJ, Hodnett G, Drabek J et al (2005) Evolution of genome size in Brassicaceae. Ann Bot 95:229–235PubMedCentralCrossRefPubMedGoogle Scholar
  13. Kim JS, Chung TY, King GJ, Jin M, Yang TJ et al (2006) A sequence-tagged linkage map of Brassica rapa. Genetics 174:29–39Google Scholar
  14. Koo DH, Plaha P, Lim YP, Hur Y, Bang JW (2004) A high-resolution karyotype of Brassica rapa ssp. pekinensis revealed by pachytene analysis and multicolor fluorescence in situ hybridization. Theor Appl Genet 109:1346–1352CrossRefPubMedGoogle Scholar
  15. Kulikova O, Geurts R, Lamine M, Kim DJ, Cook DR et al (2004) Satellite repeats in the functional centromere and pericentromeric heterochromatin of Medicago truncatula. Chromosoma 113:276–283Google Scholar
  16. Kwon SJ, Kim DH, Lim MH, Long Y, Meng JL et al (2007) Terminal repeat retrotransposon in miniature (TRIM) as DNA markers in Brassica relatives. Mol Genet Genom 278:361–370Google Scholar
  17. Lee SC, Lim MH, Kim JA, Lee SI, Kim JS et al (2008) Transcriptome analysis in Brassica rapa under the abiotic stresses using Brassica 24K oligo microarray. Mol Cells 26:595–605Google Scholar
  18. Lim KB, de Jong H, Yang TJ, Park JY, Kwon SJ et al (2005) Characterization of rDNAs and tandem repeats in the heterochromatin of Brassica rapa. Mol Cells 19:436–444PubMedGoogle Scholar
  19. Lim KB, Yang TJ, Hwang YJ, Kim JS, Park JY et al (2007) Characterization of the centromere and peri-centromere retrotransposons in Brassica rapa and their distribution in related Brassica species. Plant J 49:173–183Google Scholar
  20. Lukens LN, Quijada PA, Udall J, Pires JC, Schranz ME et al (2004) Genome redundancy and plasticity within ancient and recent Brassica crop species. Biol J Linn Soc Lond 82:665–674CrossRefGoogle Scholar
  21. Luo MC, Thomas C, You FM, Hsiao J, Ouyang S et al (2003) High-throughput fingerprinting of bacterial artificial chromosomes using the SNaPshot labeling kit and sizing of restriction fragments by capillary electrophoresis. Genomics 82: 378–389Google Scholar
  22. Marra M, Kucaba T, Sekhon M, Hillier L, Martienssen R et al (1999) A map for sequence analysis of the Arabidopsis thaliana genome. Nat Genet 22:265–270CrossRefPubMedGoogle Scholar
  23. Mun J-H, Kim DJ, Choi HK, Gish J, Debelle F et al (2006) Distribution of microsatellites in the genome of Medicago truncatula: a resource of genetic markers that integrate genetic and physical maps. Genetics 172:2541–2555Google Scholar
  24. Mun J-H, Kwon SJ, Yang TJ, Kim HS, Choi BS et al (2008) The first generation of a BAC-based physical map of Brassica rapa. BMC Genom 9:280CrossRefGoogle Scholar
  25. Mun JH, Kwon SJ, Yang TJ, Seol YJ, Jin M et al (2009) Genome-wide comparative analysis of the Brassica rapa gene space reveals genome shrinkage and differential loss of duplicated genes after whole genome triplication. Genome Biol 10:R111PubMedCentralCrossRefPubMedGoogle Scholar
  26. Mun JH, Kwon SJ, Seol YJ, Kim JA, Jin M et al (2010) Sequence and structure of Brassica rapa chromosome A3. Genome Biol 11:R94PubMedCentralCrossRefPubMedGoogle Scholar
  27. Nagaharu U (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452Google Scholar
  28. Nelson WM, Bharti AK, Butler E, Wei F, Fuks G et al (2005) Whole-genome validation of high-information-content fingerprinting. Plant Physiol 139:27–38PubMedCentralCrossRefPubMedGoogle Scholar
  29. O’Neill CM, Bancroft I (2000) Comparative physical mapping of segments of the genome of Brassica oleracea var. alboglabra that are homoelogous to sequenced regions of chromosomes 4 and 5 of Arabidopsis thaliana. Plant J 23: 233–243Google Scholar
  30. Quiniou SMA, Waldbieser GC, Duke MV (2007) A first generation BAC-based physical map of the channel catfish. BMC Genom 8:40CrossRefGoogle Scholar
  31. Schmidt R, Acarkan A, Boivin K (2001) Comparative structural genomics in the Brassicaceae family. Plant Physiol Biochem 39:253–262CrossRefGoogle Scholar
  32. Soderlund C, Humphray S, Dunham I, French L (2000) Contigs built with fingerprints, markers, and FPC V4.7. Genome Res 11:934–941Google Scholar
  33. The Brassicarapa Genome Sequencing Project Consortium (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1040CrossRefGoogle Scholar
  34. The International Human Genome Mapping Consortium (2001) A physical map of the human genome. Nature 409:934–941Google Scholar
  35. Town CD, Cheung F, Maiti R, Crabtree J, Haas BJ et al (2006) Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell 18:1348–1359PubMedCentralCrossRefPubMedGoogle Scholar
  36. Xu Z, Sun S, Covaleda L, Ding K, Zhang A et al (2004) Genome physical mapping with large-insert bacterial clones by fingerprint analysis: methodologies, source clone genome coverage, and contig map quality. Genomics 84:941–951Google Scholar
  37. Yang TJ, Kim JS, Kwon SJ, Lim KB, Choi BS et al (2006) Sequence-level analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa. Plant Cell 18:1339–1347PubMedCentralCrossRefPubMedGoogle Scholar
  38. Yang TJ, Kim JS, Lim KB, Kwon SJ, Kim JA et al (2005) The Korea Brassica Genome Projects: a glimpse of the Brassica genome based on comparative genome analysis with Arabidopsis. Compar Funct Genom 6:138–146CrossRefGoogle Scholar
  39. Yang TJ, Kwon SJ, Choi BS, Kim JS, Jin M et al (2007) Characterization of terminal-repeat retrotransposon in miniature (TRIM) in Brassica relatives. Theor Appl Genet 114:627–636CrossRefPubMedGoogle Scholar
  40. Zhang Y, Huang Y, Zhang L, Li Y, Lu T et al (2004) Structural features of the rice chromosome 4 centromere. Nucl Acid Res 32:2023–2030Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Bioscience and BioinformaticsMyongji UniversityYonginKorea
  2. 2.Department of Life ScienceThe Catholic University of KoreaBucheonKorea
  3. 3.The Agricultural Genome CenterNational Academy of Agricultural Science, Rural Development AdministrationWanjuKorea

Personalised recommendations