Advertisement

Impact Molecular Marker and Genomics-Led Technologies on Brassica Breeding

  • Jianjun ZhaoEmail author
Chapter
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

At the early generations of plant breeding, landrace cultivars were developed by selection from favorable variations in traits of interest including yield, and resistance to diseases, and other traits. Now new technologies including hybridization and recently developed molecular tools have been developed, which are speeding up the modern commercial plant breeding program. Herein, we present an review on DNA marker development and its wide utility in marker-assisted breeding (MAS) and genomic selection. The review of marker-assisted selection in Brassica rapa is summarized and discussed.

Keywords

Quantitative Trait Locus Double Haploid Cytoplasmic Male Sterility Chinese Cabbage Genomic Selection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H et al (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30:174–178CrossRefPubMedGoogle Scholar
  2. Ashrafi H, Hill T, Stoffel K, Kozik A, Yao J et al (2012) De novo assembly of the pepper transcriptome (Capsicum annuum): a benchmark for in discovery of SNPs, SSRs and candidate silico genes. BMC Genom 13:571CrossRefGoogle Scholar
  3. Bernardo R (2010) Genome wide selection with minimal crossing in self-pollinated crops. Crop Sci 50:624–627CrossRefGoogle Scholar
  4. Bonnema G, Carpio DPD, Zhao JJ (2011) Diversity analysis and molecular taxonomy of Brassica vegetable crops. In: Kole C, Sadowski J (eds) Genetics, genomics and breeding of crop plants., Vegetable BrassicasScience Publishers, Enfield, pp 81–124Google Scholar
  5. Bonnett DG, Rebetzke GJ, Spielmeyer W (2005) Strategies for efficient implementation of molecular markers in wheat breeding. Mol Breed 15:75–85CrossRefGoogle Scholar
  6. Castro AJ, Capettini F, Corey AE, Filichkina T, Hayes PM et al (2003) Mapping and pyramiding of qualitative and quantitative resistance to stripe rust in barley. Theor Appl Genet 107:922–930CrossRefPubMedGoogle Scholar
  7. Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Phil Trans Roy Soc Sr B 363(1491):557–572CrossRefGoogle Scholar
  8. Eathington SR, Crosbie TM, Edwards MD, Reiter RS, Bull JK (2007) Molecular markers in a commercial breeding program. Crop Sci 47:S154–S163CrossRefGoogle Scholar
  9. Fekih R, Takagi H, Tamiru M, Abe A, Natsume S et al (2013) MutMap: genetic mapping and mutant identification without crossing in rice. PLoS ONE 8(7):e68529PubMedCentralCrossRefPubMedGoogle Scholar
  10. Flint-Garcia SA, Darrah LL, McMullen MD, Hibbard BE (2003) Phenotypic versus marker-assisted selection for stalk strength and second-generation European corn borer resistance in maize. Theor Appl Genet 107:1331–1336CrossRefPubMedGoogle Scholar
  11. Frisch M, Melchinger AE (2001) Marker-assisted backcrossing for introgression of a recessive gene. Crop Sci 41:1485–1494CrossRefGoogle Scholar
  12. Frisch M, Bohn M, Melchinger AE (1999a) Minimum sample size and optimal positioning of flanking markers in marker-assisted backcrossing for transfer of a target gene. Crop Sci 39:967–975CrossRefGoogle Scholar
  13. Frisch M, Bohn M, Melchinger AE (1999b) Comparison of selection strategies for marker assisted backcrossing of a gene. Crop Sci 39:1295–1301CrossRefGoogle Scholar
  14. Fu T, Yang G, Yang X (1990) Studies on “three line” Polimacytoplasmic male sterility developed in Brassica napus. Plant Breed 104:115–120CrossRefGoogle Scholar
  15. Heerwaarden J, Odong TL, Eeuwijk FA (2013) Maximizing genetic differentiation in core collections by PCA-based clustering of molecular marker data. Theor Appl Genet 126:763–772CrossRefPubMedGoogle Scholar
  16. Holland JB (2004) Implementation of molecular markers for quantitative traits in breeding programs—challenges and opportunities. In: Proceedings for the 4th international crop science congress, Brisbane, Australia, 2004; 26 September-1 October. Published on CDROM. Web site www.cropscience.org.au
  17. Hospital F (2003) Marker-assisted breeding. In: Newbury HJ (ed) Plant molecular breeding. Blackwell Publishing, Oxford, pp 30–59Google Scholar
  18. Jain A, Bhatia S, Banga SS, Prakash S, Lakshmikumaran M (1994) Potential use of random amplified polymorphic DNA (RAPD) to study the genetic diversity in Indian mustard (Brassicajuncea (L) Czern and Coss) and its relationship with heterosis. Theor Appl Genet 88:116–122CrossRefPubMedGoogle Scholar
  19. Jannink JL, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genom 9:166–177CrossRefGoogle Scholar
  20. Kubo N, Saito M, Tsukazaki H, Kondo T, Matsumoto S, Hirai M (2010) Detection of quantitative trait loci controlling morphological traits in Brassica rapa L. Breed Sci 60:164–171CrossRefGoogle Scholar
  21. Kumar S, Banks TW, Cloutier S (2012) SNP Discovery through next-generation sequencing and its applications. Int J Plant Genom 2012:15. doi: 10.1155/2012/831460 Google Scholar
  22. Li F, Kitashiba H, Inaba K, Nishio T (2009) A Brassica rapa linkage map of EST-based SNP markers for identification of candidate genes controlling flowering time and leaf morphological traits. DNA Res 16:311–323PubMedCentralCrossRefPubMedGoogle Scholar
  23. Lou P, Zhao JJ, Kim JS, Shen S, Dunia PDC et al (2007) Quantitative trait loci for flowering time and morphological traits in multiple populations of Brassica rapa. J Exp Bot 58:4005–4016CrossRefPubMedGoogle Scholar
  24. Lou P, Zhao J, He H, Hanhart C, Dunia PDC et al (2008) Quantitative trait loci for glucosinolate accumulation in Brassica rapa leaves. New Phytol 179:1017–1032CrossRefPubMedGoogle Scholar
  25. Lu G, Cao JS, Yu XL, Xiang X, Chen H (2008) Mapping QTLs for root morphological traits in Brassica rapa L. based on AFLP and RAPD markers. J Appl Genet 49:23–31CrossRefPubMedGoogle Scholar
  26. Mammadov J, Aggarwal R, Buyyarapu R, Kumpatla S (2012) SNP markers and their impact on plant breeding. Int J Plant Genom 2012:11. doi: 10.1155/2012/728398 Google Scholar
  27. Matsumoto E, Ueno H, Aruga D, Sakamoto K, Hayashida N (2012) Accumulation of three clubroot resistance gene through marker-assisted selection in Chinese cabbage (Brassicarapa ssp. pekinensis). J Jpn Soc Hort Sci 81(2):184–190CrossRefGoogle Scholar
  28. Mohammadi SA, Prasanna BM (2003) Analysis of genetic diversity in crop plants—salient statistical tools and cconsiderations. Crop Sci 43:1235–1248CrossRefGoogle Scholar
  29. Mohler V, Singrun C (2004) General considerations: marker-assisted selection. In: Lorz H, Wenzel G (eds) Biotechnology in agriculture and forestry., Molecular marker systemsSpringer, Berlin, pp 305–317Google Scholar
  30. Piao ZY, Wu D, Wang M, Zhang T (2010) Marker-assisted selection of near isogenic lines for clutroot resistant gene in Chinese cabbage. Acta Hort Sin 37(8):1264–1272Google Scholar
  31. Ragot M, Lee M, Guimaraes E, et al (2007) Marker-assisted selection in maize: current status, potential, limitations and perspectives from the private and public sectors. Marker-assisted selection, current status and future perspectives in crops, Livestock, Forestry and Fish, pp 117–150Google Scholar
  32. Reif JC, Melchinger AE, Xia XC, Warburton ML, Hoisington DA et al (2003) Use of SSRs for establishing heterotic groups in subtropical maize. Theor Appl Genet 107:947–957CrossRefPubMedGoogle Scholar
  33. Reif JC, Hamrit S, Heckenberger M, Schipprack W, Maurer HP et al (2005) Trends in genetic diversity among European maize cultivars and their parental components during the past 50 years. Theor Appl Genet 111:838–845CrossRefPubMedGoogle Scholar
  34. Ren R, Nagel BA, Kumpatla SP, et al (2011) Maize cytoplasmic male sterility (Cms) C-type restorer Rf4 gene. Molecular markers and their use. Google PatentsGoogle Scholar
  35. Ribaut JM, Ragot M (2007) Marker-assisted selection to improve drought adaptation in maize: the backcross approach, perspectives, limitations, and alternatives. Exp Bot 58(2):351–360CrossRefGoogle Scholar
  36. Robert VJM, West MAL, Inai S, Caines A, Arntzen L et al (2001) Marker-assisted introgression of blackmold resistance QTL alleles from wild Lycopersicon cheesmanii to cultivated tomato (L. esculentum) and evaluation of QTL phenotypic effects. Mol Breed 8:217–233CrossRefGoogle Scholar
  37. Rosso ML, Burleson SA, Maupin LM, Rainey KM (2011) Development of breeder-friendly markers for selection of MIPS1 mutations in soybean. Mol Breed 28(1):127–132CrossRefGoogle Scholar
  38. Sanchez AC, Brar DS, Huang N, Li Z, Khush GS (2000) Sequence tagged site marker-assisted selection for three bacterial blight resistance genes in rice. Crop Sci 40:792–797CrossRefGoogle Scholar
  39. Tanksley S (1993) Mapping polygenes. Annu Rev Genet 27:205–233CrossRefPubMedGoogle Scholar
  40. Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822CrossRefPubMedGoogle Scholar
  41. UN (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452Google Scholar
  42. Varshney RK, Terauchi R, McCouch SR (2014) Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding. PLOS Biol 12(6):e1001883PubMedCentralCrossRefPubMedGoogle Scholar
  43. Wang Z, Ge Y, Jing J, Han X, Piao ZY (2014) Integrated genetic linkage map based on UGMS and gSSR markers in Brassica rapa. Sci Hort 179:293–300CrossRefGoogle Scholar
  44. Xiao D, Zhao JJ, Hou XL, Basnet RK, Carpio DP et al (2013) The Brassica rapa FLC homologue FLC2 is a key regulator of flowering time, identified through transcriptional co-expression networks. J Exp Bot 64:4503–4516PubMedCentralCrossRefPubMedGoogle Scholar
  45. Yamagishi H, Bhat SR (2014) Cytoplasmic male sterility in Brassicaceae crops. Breed Sci 64:38–47PubMedCentralCrossRefPubMedGoogle Scholar
  46. Yashitola J, Thirumurugan T, Sundaram RM, Naseerullah MK, Ramesha MS et al (2002) Assessment of purity of rice hybrids using microsatellite and STS markers. Crop Sci 42:1369–1373CrossRefGoogle Scholar
  47. Yu SC, Zhang FL, Yu RB, Zou YM, Qi JN et al (2009) Genetic mapping and localization of a major QTL for seedling resistance to downy mildew in Chinese cabbage (Brassica rapa ssp. pekinensis). Mol Breed 23:573–590CrossRefGoogle Scholar
  48. Zhang JF, Lu Y, Yuan YI, Zhang XW, Geng JF et al (2009) Map-based cloning and characterization of a gene controlling hairiness and seed coat color traits in Brassica rapa. Plant Mol Biol 69:553–563CrossRefPubMedGoogle Scholar
  49. Zhang T, Wu D, Zhao Z, Wang Z, Piao ZY (2012) Development of near isogenic lines for clubroot resistance in chinese cabbage and their assessment. Mol Plant Breed 10(6):722–730 (in Chinese)Google Scholar
  50. Zhang T, Zhao Z, Zhang CY, Pang WX, Choi SR et al (2014) Fine genetic and physical mapping of the CRb gene conferring resistance to clubroot disease in Brassica rapa. Mol Breed 34:1173–1183CrossRefGoogle Scholar
  51. Zhao J, Wang X, Deng B, Lou P, Wu J et al (2005) Genetic relationships within Brassica rapa as inferred from AFLP fingerprints. Theor Appl Genet 110:1301–1314CrossRefPubMedGoogle Scholar
  52. Zhao J, Paulo MJ, Jamar D, Lou P, van Eeuwijk F et al (2007) Association mapping of leaf traits, flowering time, and phytate content in Brassica rapa. Genome 50(10):963–973CrossRefPubMedGoogle Scholar
  53. Zhao J, Artemyeva A, Carpio DPD, Basnet RK, Zhang NW et al (2010) Design of a Brassica rapa core collection for association mapping studies. Genome 53:884–898CrossRefPubMedGoogle Scholar
  54. Zheng P, Allen WB, Roesler K et al (2008) A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat Genet 40(3):367–372CrossRefPubMedGoogle Scholar
  55. Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20CrossRefGoogle Scholar
  56. Zong G, Wang A, Wang L, Liang G, Gu M et al (2012) A pyramid breeding of eight grain-yield related quantitative trait loci based on marker-assistant and phenotype selection in rice (Oryza sativa L.). J Genet Genom 39:335–350CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.College of HorticultureHebei Agricultural UniversityBaodingChina

Personalised recommendations