Skip to main content

Comparative Analysis of Gene Conversion Between Duplicated Regions in Brassica rapa and B. oleracea Genomes

  • Chapter
  • First Online:
The Brassica rapa Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Plant genomes contain many duplicated genes, some of which were produced by recursive polyploidizations. These duplicated genes may evolve interactively and even concertedly through homoeologous recombination. Here, we explored likely gene conversion in Brassica rapa and Brassica oleracea. By checking gene colinearity, we detected 4296 duplicated genes existing in both the species, which were produced by whole-genome triplication from their common ancestor. Incongruities of homologous gene tree topologies indicated that 8 % of these duplicated genes were converted by one another after the divergence of B. rapa and B. oleracea. These converted genes are more often from larger duplicated chromosomal blocks, indicating that illegitimate recombination is more likely to occur between larger homoeologous chromosomal regions. This research contributed to understanding genome stability and gene evolution after polyploidization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrouk M, Murat F, Pont C, Messing J, Jackson S et al (2010) Palaeogenomics of plants: synteny-based modelling of extinct ancestors. Trends Plant Sci 15:479–487

    Article  CAS  PubMed  Google Scholar 

  • Bowers JE, Chapman BA, Rong J, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438

    Article  CAS  PubMed  Google Scholar 

  • Bowers JE, Arias MA, Asher R, Avise JA, Ball RT, et al (2005) Comparative physical mapping links conservation of microsynteny to chromosome structure and recombination in grasses. Proc Natl Acad Sci USA 102:13206–13211

    Google Scholar 

  • Chen JM, Cooper DN, Chuzhanova N, Ferec C, Patrinos GP (2007) Gene conversion: mechanisms, evolution and human disease. Nat Rev Genet 8:762–775

    Article  CAS  PubMed  Google Scholar 

  • Feldman M, Levy AA, Fahima T, Korol A (2012) Genomic asymmetry in allopolyploid plants: wheat as a model. J Exp Bot 63:5045–5059

    Article  CAS  PubMed  Google Scholar 

  • Freeling M, Woodhouse MR, Subramaniam S, Turco G, Lisch D, Schnable JC (2012) Fractionation mutagenesis and similar consequences of mechanisms removing dispensable or less-expressed DNA in plants. Curr Opin Plant Biol 15:131–139

    Google Scholar 

  • Gaeta RT, Chris Pires J (2009) Homoeologous recombination in allopolyploids: the polyploid ratchet. New Phytol 186:18–28

    Article  PubMed  Google Scholar 

  • Gaeta RT, Pires JC, Iniguez-Luy F, Leon E, Osborn TC (2007) Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Plant Cell 19:3403–3417

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jacquemin J, Laudie M, Cooke R (2009) A recent duplication revisited: phylogenetic analysis reveals an ancestral duplication highly-conserved throughout the Oryza genus and beyond. BMC Plant Biol 9:146

    Article  PubMed Central  PubMed  Google Scholar 

  • Jaillon O, Aury JM, Noel B, Policriti A, Clepet C et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  CAS  PubMed  Google Scholar 

  • Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, et al (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473:97–100

    Google Scholar 

  • Jiao Y, Leebens-Mack J, Ayyampalayam S, Bowers JE, McKain MR et al (2012) A genome triplication associated with early diversification of the core eudicots. Genome Biol 13:R3

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu S, Liu Y, Yang X, Tong C, Edwards D, et al (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun 5:3930

    Google Scholar 

  • Marfil CF, Masuelli RW, Davison J, Comai L (2006) Genomic instability in Solanum tuberosum × Solanum kurtzianum interspecific hybrids. Genome 49:104–113

    Google Scholar 

  • Mazowita M, Haque L, Sankoff D (2006) Stability of rearrangement measures in the comparison of genome sequences. J Comput Biol 13:554–566

    Article  CAS  PubMed  Google Scholar 

  • McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792–801

    Article  CAS  PubMed  Google Scholar 

  • Murat F, Xu JH, Tannier E, Abrouk M, Guilhot N et al (2010) Ancestral grass karyotype reconstruction unravels new mechanisms of genome shuffling as a source of plant evolution. Genome Res 20:1545–1557

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paterson AH (2008) Paleopolyploidy and its impact on the structure and function of modern plant genomes. Genome Dyn 4:1–12

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Google Scholar 

  • Paterson AH, Wendel JF, Gundlach H, Guo H, Jenkins J, et al (2012) Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492:423–427

    Google Scholar 

  • Proost S, Pattyn P, Gerats T, Van de Peer Y (2011) Journey through the past: 150 million years of plant genome evolution. Plant J 66:58–65

    Google Scholar 

  • Schnable JC, Springer NM, Freeling M (2011) Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss. Proc Natl Acad Sci USA 108:4069–4074

    Google Scholar 

  • Soltis PS, Soltis DE (2009) The role of hybridization in plant speciation. Annu Rev Plant Biol 60:561–588

    Article  CAS  PubMed  Google Scholar 

  • Soltis DE, Bell CD, Kim S, Soltis PS (2008) Origin and early evolution of angiosperms. Ann N Y Acad Sci 1133:3–25

    Article  CAS  PubMed  Google Scholar 

  • Tang H, Bowers JE, Wang X, Paterson AH (2010) Angiosperm genome comparisons reveal early polyploidy in the monocot lineage. Proc Natl Acad Sci USA 107:472–477

    Google Scholar 

  • Wang XY, Paterson AH (2011) Gene conversion in angiosperm genomes with an emphasis on genes duplicated by polyploidization. Genes (Basel) 2:1–20

    Google Scholar 

  • Wang X, Shi X, Hao B, Ge S, Luo J (2005) Duplication and DNA segmental loss in the rice genome: implications for diploidization. New Phytol 165:937–946

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Tang H, Bowers JE, Feltus FA, Paterson AH (2007) Extensive concerted evolution of rice paralogs and the road to regaining independence. Genetics 177:1753–1763

    Google Scholar 

  • Wang X, Tang H, Bowers JE, Paterson AH (2009) Comparative inference of illegitimate recombination between rice and sorghum duplicated genes produced by polyploidization. Genome Res 19:1026–1032

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang X, Tang H, Paterson AH (2011a) Seventy million years of concerted evolution of a homoeologous chromosome pair, in parallel, in major Poaceae lineages. Plant Cell 23:27–37

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang X, Wang H, Wang J, Sun R, Wu J et al (2011b) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039

    Article  CAS  PubMed  Google Scholar 

  • Wang XY, Tang HB, Paterson AH (2011c) Seventy million years of concerted evolution of a homoeologous chromosome pair, in parallel, in major poaceae lineages. Plant Cell 23:27–37

    Google Scholar 

  • Xu S, Clark T, Zheng H, Vang S, Li R et al (2008) Gene conversion in the rice genome. BMC Genom 9:93

    Article  Google Scholar 

  • Yang S, Yuan Y, Wang L, Li J, Wang W, et al (2012) Great majority of recombination events in Arabidopsis are gene conversion events. Proc Natl Acad Sci USA 109:20992–20997

    Google Scholar 

  • Zhu Q, Zheng X, Luo J, Gaut BS, Ge S (2007) Multilocus analysis of nucleotide variation of Oryza sativa and its wild relatives: severe bottleneck during domestication of rice. Mol Biol Evol 24:875–888

    Article  CAS  PubMed  Google Scholar 

  • Ziolkowski PA, Kaczmarek M, Babula D, Sadowski J (2006) Genome evolution in Arabidopsis/Brassica: conservation and divergence of ancient rearranged segments and their breakpoints. Plant J 47:63–74

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiyin Wang or Andrew H. Paterson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, J., Guo, H., Jin, D., Wang, X., Paterson, A.H. (2015). Comparative Analysis of Gene Conversion Between Duplicated Regions in Brassica rapa and B. oleracea Genomes. In: Wang, X., Kole, C. (eds) The Brassica rapa Genome. Compendium of Plant Genomes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47901-8_11

Download citation

Publish with us

Policies and ethics