Skip to main content

Most Important Methods for Production of Amorphous Metallic Alloys

  • Chapter
Glassy Metals

Abstract

The most frequently used methods for production of amorphous metallic alloys via rapid solidification from the melt, chill block melt spinning, and planar flow casting are presented and discussed. The influence of technological production parameters are taken under consideration. The dependence of the geometrical dimensions of ribbonlike glassy metals upon the melt ejection pressure and peripheral velocity of the quenching substrate (disk) is theoretically subjected to analysis and experimental proof. The authors’ experience upon the production of bulk amorphous alloys is presented and discussed. A brief description about other methods for production of amorphous metallic materials is presented. An overview about the bibliography in the form of more than 90 cited references is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davies HA (1983) In: Luborsky FE (ed) Amorphous metallic alloys. Butterworths, London, p 13

    Google Scholar 

  2. Hafner J (1981) In: Guentherodt H-J, Beck H (eds) Metallic glasses. Springer Verlag, Berlin, p 93

    Google Scholar 

  3. Giessen BS, Whang SH (1980) J Phys C8:95

    Google Scholar 

  4. Sommer F (1981) Zs Metallkde 72:219

    Google Scholar 

  5. Pond R, Maddin P (1969) Trans Met Soc AIME 245:2475

    Google Scholar 

  6. Chen HS, Miller CE (1970) Rev Sci Instrum 41:237

    Article  Google Scholar 

  7. Anestiev L (1991) Mater Sci Eng A131:115

    Article  Google Scholar 

  8. Huang SC, Fiedler HC (1981) Mater Sci Eng 51:39

    Article  Google Scholar 

  9. Takayama S, Oi T (1979) J Appl Phys 5C(7):4962

    Article  Google Scholar 

  10. Giessen B et al (1972) In: Beer SZ (ed) Physics and chemistry of liquid metals. Marcel Dekker, New York, p 633

    Google Scholar 

  11. Jones H (1973) Rep Prog Phys 36:1425

    Article  Google Scholar 

  12. Jones H et al (1973) J Mat Sci 8:705

    Article  Google Scholar 

  13. Davies HA (1978) In: Cantor B (ed) Proceedings of the conference on rapidly quenched metals RQ3, vol 1. The Metals Society, London, p 1

    Google Scholar 

  14. Liebermann HH (1979) Trans Mag MAG 15:1393

    Article  Google Scholar 

  15. Duvez P et al (1960) J Appl Phys 31:1136

    Google Scholar 

  16. Miroshnichenko IS (1982) Quenching from the melt. Metallurgy, Moscow, p 168, in Russian

    Google Scholar 

  17. Esslinger P et al (1965) Zs Wirtschaft Fertigung 60:1156

    Google Scholar 

  18. Chen HS et al (1970) Rev Sci Instrum 41:1237

    Article  Google Scholar 

  19. Pond RB (1958) Metallic filaments and method of making same. US Patent 2,825,108, 4 Mar 1958

    Google Scholar 

  20. Polk DE et al (1974) J Non-Cryst Solids 15:165

    Article  Google Scholar 

  21. Bedell JR, Wellslager JA (1975) Elevation of melt in the melt extraction production of metal filaments. US Patent 3,863,700, 4 Feb 1975

    Google Scholar 

  22. Bedell JR (1975) Extended retention of melt spun ribbon on quenching wheel. US Patent 3,862,658,A, 28 Jan 1975

    Google Scholar 

  23. Bedell JR, Rothmayer NY et al (1978) Chill roll casting of continuous filament. US Patent 4,077,462, 7 Mar 1978

    Google Scholar 

  24. Kavesh S (1974) Liquid quenching of free jet spun metal filaments. US Patent 3,845,805, 5 Nov 1974

    Google Scholar 

  25. Kavesh S (1978) In: Gilman JJ, Leamy HJ (eds) Metallic glasses. ASM, Metals Park, p 36

    Google Scholar 

  26. Narasimhan MC (1979) Continuous casting method for metallic strips. US Patent 4,142,571, 6 Mar 1979

    Google Scholar 

  27. Mobley CE, Maringer RE (1975) An improved method of formation of filament directly from molten material. US Patent 3,861,450, 21 Jan 1975

    Google Scholar 

  28. Beddow JK (1980) The production of metal powder by atomization. Heyden and Sons LTD, London

    Google Scholar 

  29. Grant NJ (1985) In: Steeb S, Warlimont H (eds) Proceedings of the conference on rapidly quenched metals RQ5, vol 1. North Holland, Amsterdam, p 3

    Google Scholar 

  30. Lawley A (1977) Int J Powder Met Powder Tech 13:169

    Google Scholar 

  31. Lubanska H (1970) J Metals 22:45

    Google Scholar 

  32. Klar E et al (1072) In: Burke JJ, Weiss V (eds) Powder metallurgy for high-performance applications. Syracuse University Press, Syracuse, p 57

    Google Scholar 

  33. Mehrotra SP et al (1980) Trans Indian Inst Metals 33:361

    Google Scholar 

  34. Lawley A (1981) J Metals 33:13

    Google Scholar 

  35. Dain RJ (1980) Atomizer for making powder. US Patent 4,191,516, 4 Mar 1980

    Google Scholar 

  36. Yamaguchi T (1981) Amorphous electronic materials and their application. Science Forum Press, Tokyo, p 78

    Google Scholar 

  37. Miller S et al (1979) Scr Metall 13:673

    Article  Google Scholar 

  38. Anand V et al (1980) In: Reston R, Mehrabian R, Kear B, Cohen M (eds) Proceedings of the 2nd conference on rapid solidification processing: principles and technologies, Baton Rouge LA, Claitor’s Publ Division, p 273

    Google Scholar 

  39. Thompson CC (1981) Gas manifold for particle quenching. US Patent 4,284,394, 18 Aug 1981

    Google Scholar 

  40. Yamaguchi T (1978) Appl Phys Letters 33:498

    Article  Google Scholar 

  41. Singer A et al (1980) Powder Metall 2:81

    Article  Google Scholar 

  42. Singer ARE et al (1977) In: Hausner HH, Taubenblat PV (eds) Modern developments in powder metallurgy. Metal Powder Industries Federation, Princeton, p 127

    Google Scholar 

  43. Ishii H (1982) In: Masumoto T, Suzuki K (eds) Proceedings of the conference on rapidly quenched metals RQ4, vol 1. Japan Institute of Metals, p 238

    Google Scholar 

  44. Anestiev L, Russev KA (1987) On the fluid dynamics of formation of thin metal ribbons by rapid quenching from the melt. Mater Sci Eng 95:281

    Article  Google Scholar 

  45. Strange EH, Pim CA (1908) Process of manufacturing thin sheets, foil, strips, or ribbons of zinc, lead, or other metal or alloy. US Patent 905,758, 1 Dec 1908

    Google Scholar 

  46. Pond RB (1959) Method of forming round metal filaments. US Patent 2,879,566 A, 31 Mar 1959

    Google Scholar 

  47. Kavesh S (1978) In: Gilman JJ, Leamy HJ (eds) Proceedings of the symposium on metallic glasses, Niagara Falls, ASM, Metals Park, p 36

    Google Scholar 

  48. Russew K, Stojanova L, Lovas A (1994) Effect of processing conditions on the ribbon geometry and viscous flow behavior of Fe40Ni40Si6B14 amorphous alloy. Int J Rapid Solidification 8:147

    Google Scholar 

  49. Anderson PM III, Lord AE Jr (1980) Mat Sci Eng 43:267

    Article  Google Scholar 

  50. Chhabra RP, Sheth DK (1990) Z Metallkde 81:264

    Google Scholar 

  51. Anestiev L, Russew K (1988) On the dependence between the casting conditions and ribbon dimensions by PFC method. In: Proceedings of the first international conference on rapidly quenched metals, Varna, 1987, Akademie der Wissenschaften der DDR, VEB Kongress- und Werbedruck, Oberlungwitz, p 63

    Google Scholar 

  52. Takayama S, Oi T (1979) J Appl Phys 50:4962

    Article  Google Scholar 

  53. Antony T, Cline H (1978) J Appl Phys 49:829

    Article  Google Scholar 

  54. Aleshko PI (1977) Mechanics of fluid and gas. High School Publ. House, Kharkov, p 320 (In Russian)

    Google Scholar 

  55. Kopasz C et al (1983) In: Proceedings of the EPS conference soft magnetic materials 6, vol 7E. Eger, Hungary, p 101

    Google Scholar 

  56. Greer AL (1993) Nature 366:303

    Article  Google Scholar 

  57. Greer AL (1995) Science 267:1947

    Article  Google Scholar 

  58. Inoue A et al (1990) Mater Trans Jpn Inst Met 31:425

    Google Scholar 

  59. Inoue A et al (1993) Mater Trans Jpn Inst Met 34:351

    Google Scholar 

  60. He Y et al (1994) Philos Mag Lett 70:371

    Article  Google Scholar 

  61. Inoue A et al (1991) Mater Trans Jpn Inst Met 32:609

    Google Scholar 

  62. Inoue A et al (1992) Mater Trans Jpn Inst Met 33:937

    Google Scholar 

  63. Zhang T et al (1991) Mater Trans Jpn Inst Met 32:1005

    Google Scholar 

  64. Inoue A, Shinohara Y, Gook JS (1995) Mater Trans JIM 36:1180

    Article  Google Scholar 

  65. Kim YJ et al (1994) Appl Phys Lett 65:2136

    Article  Google Scholar 

  66. He Y et al (1996) J Non-Cryst Solids 205–207:602

    Article  Google Scholar 

  67. Kim YH, Inoue A, Masumoto T (1990) Met Trans JIM 31:747

    Article  Google Scholar 

  68. Chen H, He Y, Shifet GJ, Poon RJ (1991) Scr Met 25:1421

    Article  Google Scholar 

  69. Inoue A, Zhang T, Itoi T, Takeuchi A (1997) Mater Trans JIM 38:359

    Article  Google Scholar 

  70. Inoue A (1998) Bulk amorphous alloys, preparation and fundamental characteristics, materials science foundations, vol 4. Trans. Tech. Publications, LTD, Zurich, p 194

    Google Scholar 

  71. Yoshizawa Y, Oguma S, Yamauchi K (1988) J Appl Phys 64:6044

    Article  Google Scholar 

  72. Suzuki K, Kataoka N, Inoue A, Makino A, Masumoto T (1990) Mater Trans JIM 31:743

    Article  Google Scholar 

  73. Croat JJ, Herbst JF, Lee RW, Pinkerton FE (1984) J Appl Phys 55:2078

    Article  Google Scholar 

  74. Hirosawa S, Matsuura Y, Yamamoto H, Fujimura S et al (1986) J Appl Phys 69:873

    Article  Google Scholar 

  75. Taranichev VE, Alenov MN, Nemova OY (1994) J Magn Magn Mater 131(3):229

    Article  Google Scholar 

  76. Kubota T, Inoue A (2004) Mater Trans JIM 45:199

    Article  Google Scholar 

  77. Deng JF, Zhang XP, Min EZ (1988) Appl Catal A 37:339

    Article  Google Scholar 

  78. Baiker A, Maciejewski M, Tagliaferri S (1993) Berichte der Bunsengesellschaft für physikalische Chemie 97(3):286

    Google Scholar 

  79. Wang WJ, Qiao MH, Yang J, Song HX, Deng JF (1997) Appl Catal A 163:101

    Article  Google Scholar 

  80. Chen H (1974) Acta Met 22:1505

    Article  Google Scholar 

  81. Inoue A (1995) Mater Trans JIM 36(7):866

    Article  Google Scholar 

  82. Inoue A, Nishiyama N (1997) Mater Sci Eng A226–228:401

    Article  Google Scholar 

  83. Kui HW, Greer AL, Turnbull D (1984) Appl Phys Lett 45:615

    Article  Google Scholar 

  84. Inoue A, Ohtera K, Kita K, Masumoto T (1998) Jap J Appl Phys 27:L2248

    Article  Google Scholar 

  85. Inoue A, Kohinata NM, Tsai AP, Masumoto T (1989) Mater Trans JIM 30:378

    Article  Google Scholar 

  86. Inoue A, Zhang T (1989) Mater Trans JIM 30:965

    Article  Google Scholar 

  87. Inoue A, Yamaguchi H, Zhang T (1990) Mater Trans JIM 31:10

    Google Scholar 

  88. Inoue A, Zhang T, Masumoto T (1990) Mater Trans JIM 31:177

    Article  Google Scholar 

  89. Inoue A, Zhang T, Masumoto T (1993) J Non-Cryst Solids 156–158:473

    Article  Google Scholar 

  90. Inoue A, Nishiyama N, Amiya K, Zhang T, Masumoto T (1994) Mater Lett 19:131

    Article  Google Scholar 

  91. Inoue A, Shibata T, Zhang T (1995) Mater Trans JIM 36:1420

    Article  Google Scholar 

  92. Peker AL, Johnson WL (1993) Apl Phys Lett 63:2342

    Article  Google Scholar 

  93. Inoue A, Zhang T, Zhang W, Takeuchi A (1996) Mater Trans JIM 37:99

    Article  Google Scholar 

  94. Inoue A, Nishiyama N, Matsuda T (1996) Mater Trans JIM 37:181

    Article  Google Scholar 

  95. Inoue A, Gook JS (1995) Mater Trans JIM 36:1180

    Article  Google Scholar 

  96. Inoue A, Shinuhara Y, Gook JS (1995) Mater Trans JIM 36:1427

    Article  Google Scholar 

  97. Inoue A, Zhang T, Takeuchi A (1996) Mater Trans JIM 37:1731

    Article  Google Scholar 

  98. Inoue A, Koshiba M, Zhang T, Makino A (1997) Mater Trans JIM 38:577

    Article  Google Scholar 

  99. Inoue A, Zhang T, Takeuchi A (1997) Appl Phys Lett 71:464

    Article  Google Scholar 

  100. Russew K, Stojanova L, Sommer F (2000) Preparation of bulk and ribbon-like amorphous metallic alloys and study of their structure and rheological properties. Part I: preparation and structural study. J Mater Sci Technol 8(1):25

    Google Scholar 

  101. Russew K, Stojanova L, Sommer F (2000) Preparation of bulk and ribbon-like amorphous metallic alloys and study of their structure and rheological properties. Part II: study of rheological properties. J Mater Sci Technol 8(1):34

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krassimir Russew .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Russew, K., Stojanova, L. (2016). Most Important Methods for Production of Amorphous Metallic Alloys. In: Glassy Metals. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47882-0_2

Download citation

Publish with us

Policies and ethics