Skip to main content

Abstract

Passive delivery through skin is favored for small molecules with moderate lipophilicity. Formulation strategies which improve skin penetration, allow controlled release, increase drug loading, and minimize skin irritancy have been explored. Nano-carrier systems (10–1000 nm) provide one such approach. This chapter discusses the role of nanotechnology in delivery of agents into/through the skin with focus on different types of nano-carriers including lipid-based vesicles, lipid-based carriers, polymer-based carriers, and nanocrystals. Success of these carrier systems in both pharmaceutical and cosmetic industries has been reviewed along with limitations associated with use of nanotechnology in skin delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramovits W, Granowski P, Arrazola P (2010) Applications of nanomedicine in dermatology: use of nanoparticles in various therapies and imaging. J Cosmet Dermatol 9:154–9

    Article  PubMed  Google Scholar 

  • Al Shaal L, Shegokar R, Muller RH (2011) Production and characterization of antioxidant apigenin nanocrystals as a novel UV skin protective formulation. Int J Pharm 420(1):133–40

    Article  PubMed  CAS  Google Scholar 

  • Albert M, Ferraz N, Stromme M (2012) Current status and future prospects of nanotechnology in cosmetics. Progress in Materials Science 57(5):875–910

    Article  CAS  Google Scholar 

  • Alvarez-Roman R, Naik A, Kalia YN, Guy RH, Fessi H (2004a) Enhancement of topical delivery from biodegradable nanoparticles. Pharm Res 21(10):1818–25

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Roman R, Naik A, Kalia YN, Guy RH, Fessi H (2004b) Skin penetration and distribution of polymeric nanoparticles. J Control Release 99(1):53–62

    Article  PubMed  CAS  Google Scholar 

  • Aphios (2013) A nanosomal formulation of paclitaxel, for kaposi’s sarcoma and skin cancers. Available from: http://www.aphios.com/products/therapeutic-product-pipeline/oncology/dermos.html. Cited 16 Mar 2013

  • Banga AK (1998) Electrically assisted transdermal and topical drug delivery. Taylor & Francis Ltd, London, UK

    Google Scholar 

  • Banga AK (2009) Microporation applications for enhancing drug delivery. Expert Opin Drug Deliv 6(4):343–54

    Article  PubMed  CAS  Google Scholar 

  • Banga AK (2011) Transdermal and intradermal delivery of therapeutic agents; application of physical technologies. Taylor & Francis Group, Florida, USA

    Google Scholar 

  • Baroli B (2010) Penetration of nanoparticles and nanomaterials in the skin: fiction or reality? J Pharm Sci 99(1):21–50

    Article  PubMed  CAS  Google Scholar 

  • Batheja P, Sheihet L, Kohn J, Singer AJ, Michniak-Kohn B (2011) Topical drug delivery by a polymeric nanosphere gel: formulation optimization and in vitro and in vivo skin distribution studies. J Control Release 149(2):159–67

    Article  PubMed  CAS  Google Scholar 

  • Bhalaria MK, Naik S, Misra AN (2009) Ethosomes: a novel delivery system for antifungal drugs in the treatment of topical fungal diseases. Indian J Exp Biol 47(5):368–75

    PubMed  CAS  Google Scholar 

  • Bouwstra JA, Honeywell-Nguyen PL, Gooris GS, Ponec M (2003) Structure of the skin barrier and its modulation by vesicular formulations. Prog Lipid Res 42(1):1–36

    Article  PubMed  CAS  Google Scholar 

  • Campbell CS, Contreras-Rojas LR, Delgado-Charro MB, Guy RH (2012) Objective assessment of nanoparticle disposition in mammalian skin after topical exposure. J Control Release 162(1):201–7

    Article  PubMed  CAS  Google Scholar 

  • Celia C, Cilurzo F, Trapasso E, Cosco D, Fresta M, Paolino D (2012) Ethosomes(R) and transfersomes(R) containing linoleic acid: physicochemical and technological features of topical drug delivery carriers for the potential treatment of melasma disorders. Biomed Microdevices 14(1):119–30

    Article  PubMed  CAS  Google Scholar 

  • Cevc G (2004) Lipid vesicles and other colloids as drug carriers on the skin. Adv Drug Deliv Rev 56(5):675–711

    Article  PubMed  CAS  Google Scholar 

  • Cevc G, Gebauer D (2003) Hydration-driven transport of deformable lipid vesicles through fine pores and the skin barrier. Biophys J 84(2 Pt 1):1010–24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen H, Khemtong C, Yang X, Chang X, Gao J (2011) Nanonization strategies for poorly water-soluble drugs. Drug Discov Today 16(7–8):354–60

    Article  PubMed  CAS  Google Scholar 

  • Choi WI, Lee JH, Kim JY, Kim JC, Kim YH, Tae G (2012) Efficient skin permeation of soluble proteins via flexible and functional nano-carrier. J Control Release 157(2):272–8

    Article  PubMed  CAS  Google Scholar 

  • Corp NP (2013) SILCRYST medical coatings. Available from: http://www.nucryst.com/silcryst_division.htm. Cited 25 Feb 2013

  • Corporation N (2013) NanoStat™ platform. Available from: http://www.nanobio.com/Platform-Technology/NanoStat-Platform.html. Cited 15 Mar 2013

  • Das S, Ng WK, Tan RB (2012) Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs? Eur J Pharm Sci 47(1):139–51

    Article  PubMed  CAS  Google Scholar 

  • Denet AR, Vanbever R, Preat V (2004) Skin electroporation for transdermal and topical delivery. Adv Drug Deliv Rev 56(5):659–74

    Article  PubMed  CAS  Google Scholar 

  • Desai P, Patlolla RR, Singh M (2010) Interaction of nanoparticles and cell-penetrating peptides with skin for transdermal drug delivery. Mol Membr Biol 27(7):247–59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dragicevic-Curic N, Scheglmann D, Albrecht V, Fahr A (2008) Temoporfin-loaded invasomes: development, characterization and in vitro skin penetration studies. J Control Release 127(1):59–69

    Article  PubMed  CAS  Google Scholar 

  • Dragicevic-Curic N, Scheglmann D, Albrecht V, Fahr A (2009) Development of different temoporfin-loaded invasomes-novel nanocarriers of temoporfin: characterization, stability and in vitro skin penetration studies. Colloids Surf B Biointerfaces 70(2):198–206

    Article  PubMed  CAS  Google Scholar 

  • El Maghraby GM, Williams AC, Barry BW (2001) Skin delivery of 5-fluorouracil from ultradeformable and standard liposomes in-vitro. J Pharm Pharmacol 53(8):1069–77

    Article  PubMed  Google Scholar 

  • El Maghraby GM, Williams AC, Barry BW (2006) Can drug-bearing liposomes penetrate intact skin? J Pharm Pharmacol 58(4):415–29

    Article  PubMed  CAS  Google Scholar 

  • El Maghraby GM, Barry BW, Williams AC (2008) Liposomes and skin: from drug delivery to model membranes. Eur J Pharm Sci 34(4–5):203–22

    Article  PubMed  CAS  Google Scholar 

  • Elias P (1991) Epidermal barrier function: intercellular lamellar lipid structures, origin, composition and metabolism. J Control Release 15(3):199–208

    Article  CAS  Google Scholar 

  • Elsayed MM, Abdallah OY, Naggar VF, Khalafallah NM (2006) Deformable liposomes and ethosomes: mechanism of enhanced skin delivery. Int J Pharm 322(1–2):60–6

    Article  PubMed  CAS  Google Scholar 

  • Escobar-Chavez J, Rodriguez-Cruz I, Dominguez-Delgado C, Diaz-Torres R, Revilla-Vazquez A, Alencaster N (2012) Nanocarrier systems for transdermal drug delivery. In: Sezer AD (ed) Recent advances in novel drug carrier systems. InTech Croatia, pp 201–32

    Google Scholar 

  • Godin B, Touitou E (2003) Ethosomes: new prospects in transdermal delivery. Crit Rev Ther Drug Carrier Syst 20(1):63–102

    Article  PubMed  CAS  Google Scholar 

  • Gokce EH, Korkmaz E, Dellera E, Sandri G, Bonferoni MC, Ozer O (2012) Resveratrol-loaded solid lipid nanoparticles versus nanostructured lipid carriers: evaluation of antioxidant potential for dermal applications. Int J Nanomedicine 7:1841–50

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo J, Ping Q, Sun G, Jiao C (2000) Lecithin vesicular carriers for transdermal delivery of cyclosporin A. Int J Pharm 194(2):201–7

    Article  PubMed  CAS  Google Scholar 

  • Gupta PN, Mishra V, Rawat A, Dubey P, Mahor S, Jain S et al (2005) Non-invasive vaccine delivery in transfersomes, niosomes and liposomes: a comparative study. Int J Pharm 293(1–2):73–82

    Article  PubMed  CAS  Google Scholar 

  • Gupta M, Agrawal U, Vyas SP (2012) Nanocarrier-based topical drug delivery for the treatment of skin diseases. Expert Opin Drug Deliv 9(7):783–804

    Article  PubMed  CAS  Google Scholar 

  • Haag R, Kratz F (2006) Polymer therapeutics: concepts and applications. Angew Chem Int Ed Engl 45(8):1198–215

    Article  PubMed  CAS  Google Scholar 

  • Haag SF, Chen M, Peters D, Keck CM, Taskoparan B, Fahr A et al (2011a) Nanostructured lipid carriers as nitroxide depot system measured by electron paramagnetic resonance spectroscopy. Int J Pharm 421(2):364–9

    Article  PubMed  CAS  Google Scholar 

  • Haag SF, Fleige E, Chen M, Fahr A, Teutloff C, Bittl R et al (2011b) Skin penetration enhancement of core-multishell nanotransporters and invasomes measured by electron paramagnetic resonance spectroscopy. Int J Pharm 416(1):223–8

    PubMed  CAS  Google Scholar 

  • Hadgraft J (2001) Skin, the final frontier. Int J Pharm 224(1–2):1–18

    Article  PubMed  CAS  Google Scholar 

  • Hadgraft J (2004) Skin deep. Eur J Pharm Biopharm 58(2):291–9

    Article  PubMed  CAS  Google Scholar 

  • Holdings S (2013) VivaGel®. Available from: http://www.starpharma.com/vivagel_bv. Cited 3 Mar 2013

  • Jain J, Bhandari A, Shah D (2010) Novel carriers for Transdermal drug delivery: a review. International Journal of Pharmaceutical and Applied Sciences 1(2):62–9

    Google Scholar 

  • Junghanns JU, Muller RH (2008) Nanocrystal technology, drug delivery and clinical applications. Int J Nanomedicine 3(3):295–309

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kim S, Shum HC, Kim J, Cho J, Weitz D (2011) Multiple polymersomes for programmed release of multiple components. J Am Chem Soc 133(38):15165–71

    Article  PubMed  CAS  Google Scholar 

  • Kobierski S, Ofori-Kwakye K, Muller RH, Keck CM (2011) Resveratrol nanosuspensions: interaction of preservatives with nanocrystal production. Pharmazie 66(12):942–7

    PubMed  CAS  Google Scholar 

  • Kuchler S, Abdel-Mottaleb M, Lamprecht A, Radowski MR, Haag R, Schafer-Korting M (2009a) Influence of nanocarrier type and size on skin delivery of hydrophilic agents. Int J Pharm 377(1–2):169–72

    Article  PubMed  CAS  Google Scholar 

  • Kuchler S, Radowski MR, Blaschke T, Dathe M, Plendl J, Haag R et al (2009b) Nanoparticles for skin penetration enhancement – a comparison of a dendritic core-multishell-nanotransporter and solid lipid nanoparticles. Eur J Pharm Biopharm 71(2):243–50

    Article  PubMed  CAS  Google Scholar 

  • Lademann J, Richter H, Teichmann A, Otberg N, Blume-Peytavi U, Luengo J et al (2007) Nanoparticles – an efficient carrier for drug delivery into the hair follicles. Eur J Pharm Biopharm 66(2):159–64

    Article  PubMed  CAS  Google Scholar 

  • Lampe MA, Burlingame AL, Whitney J, Williams ML, Brown BE, Roitman E et al (1983) Human stratum corneum lipids: characterization and regional variations. J Lipid Res 24(2):120–30

    PubMed  CAS  Google Scholar 

  • Lekki J, Stachura Z, Dabros W, Stachura J, Menzel F, Reinert T et al (2007) On the follicular pathway of percutaneous uptake of nanoparticles: Ion microscopy and autoradiography studies. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 260(1):174–7

    Article  CAS  Google Scholar 

  • Lombardi Borgia S, Regehly M, Sivaramakrishnan R, Mehnert W, Korting HC, Danker K et al (2005) Lipid nanoparticles for skin penetration enhancement-correlation to drug localization within the particle matrix as determined by fluorescence and parelectric spectroscopy. J Control Release 110(1):151–63

    Article  PubMed  CAS  Google Scholar 

  • Mishra PR, Al Shaal L, Muller RH, Keck CM (2009) Production and characterization of Hesperetin nanosuspensions for dermal delivery. Int J Pharm 371(1–2):182–9

    Article  PubMed  CAS  Google Scholar 

  • Mishra B, Patel BB, Tiwari S (2010) Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine 6(1):9–24

    Article  PubMed  CAS  Google Scholar 

  • Mitragotri S, Kost J (2004) Low-frequency sonophoresis: a review. Adv Drug Deliv Rev 56(5):589–601

    Article  PubMed  CAS  Google Scholar 

  • Mitri K, Shegokar R, Gohla S, Anselmi C, Muller RH (2011) Lutein nanocrystals as antioxidant formulation for oral and dermal delivery. Int J Pharm 420(1):141–6

    Article  PubMed  CAS  Google Scholar 

  • Muller RH, Keck CM (2012) Twenty years of drug nanocrystals: where are we, and where do we go? Eur J Pharm Biopharm 80(1):1–3

    Article  PubMed  CAS  Google Scholar 

  • Muller RH, Mader K, Gohla S (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. Eur J Pharm Biopharm 50(1):161–77

    Article  PubMed  CAS  Google Scholar 

  • Muller RH, Petersen RD, Hommoss A, Pardeike J (2007) Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv Drug Deliv Rev 59(6):522–30

    Article  PubMed  CAS  Google Scholar 

  • Müller R, Shegokar R, Gohla S, Keck C (2011) Nanocrystals: production, cellular drug delivery, current and future products. Intracellular Delivery: Fundamental Biomedical Technologies 5:411–32

    Article  Google Scholar 

  • Muller RH, Gohla S, Keck CM (2011) State of the art of nanocrystals – special features, production, nanotoxicology aspects and intracellular delivery. Eur J Pharm Biopharm 78(1):1–9

    Article  PubMed  CAS  Google Scholar 

  • Muller-Goymann CC (2004) Physicochemical characterization of colloidal drug delivery systems such as reverse micelles, vesicles, liquid crystals and nanoparticles for topical administration. Eur J Pharm Biopharm 58(2):343–56

    Article  PubMed  CAS  Google Scholar 

  • Neubert RH (2011) Potentials of new nanocarriers for dermal and transdermal drug delivery. Eur J Pharm Biopharm 77(1):1–2

    Article  PubMed  CAS  Google Scholar 

  • Otberg N, Patzelt A, Rasulev U, Hagemeister T, Linscheid M, Sinkgraven R et al (2008) The role of hair follicles in the percutaneous absorption of caffeine. Br J Clin Pharmacol 65(4):488–92

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pardeike J, Hommoss A, Muller RH (2009) Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm 366(1–2):170–84

    Article  PubMed  CAS  Google Scholar 

  • Pardeike J, Schwabe K, Muller RH (2010) Influence of nanostructured lipid carriers (NLC) on the physical properties of the Cutanova Nanorepair Q10 cream and the in vivo skin hydration effect. Int J Pharm 396(1–2):166–73

    Article  PubMed  CAS  Google Scholar 

  • Paris L (2013) Skincare-combining beauty with science. Available from: http://www.lorealparis.com.au/_en/_au/minisites/revitalift-stimulift/index.aspx?id=M_RStimulift_A_S2_Article1. Cited 16 Mar 2013

  • Pople PV, Singh KK (2011) Development and evaluation of colloidal modified nanolipid carrier: application to topical delivery of tacrolimus. Eur J Pharm Biopharm 79(1):82–94

    Article  PubMed  CAS  Google Scholar 

  • Prow TW, Grice JE, Lin LL, Faye R, Butler M, Becker W et al (2011) Nanoparticles and microparticles for skin drug delivery. Adv Drug Deliv Rev 63(6):470–91

    Article  PubMed  CAS  Google Scholar 

  • Rastogi R, Anand S, Koul V (2009) Flexible polymersomes – an alternative vehicle for topical delivery. Colloids Surf B Biointerfaces 72(1):161–6

    Google Scholar 

  • Rastogi R, Anand S, Koul V (2012) Polymersomes of PCL and PEG demonstrate enhanced therapeutic efficacy of insulin. Current Nanoscience 5(4):409–16

    Google Scholar 

  • Schafer-Korting M, Mehnert W, Korting HC (2007) Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv Drug Deliv Rev 59(6):427–43

    Article  PubMed  CAS  Google Scholar 

  • Schaller M, Korting H (1996) Interaction of liposomes with human skin: the role of the stratum corneum. Adv Drug Deliv Rev 18(3):303–9

    Article  CAS  Google Scholar 

  • Senyigit T, Sonvico F, Barbieri S, Ozer O, Santi P, Colombo P (2010) Lecithin/chitosan nanoparticles of clobetasol-17-propionate capable of accumulation in pig skin. J Control Release 142(3):368–73

    Article  PubMed  CAS  Google Scholar 

  • Shah PP, Desai PR, Singh M (2012) Effect of oleic acid modified polymeric bilayered nanoparticles on percutaneous delivery of spantide II and ketoprofen. J Control Release 158(2):336–45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shegokar R, Muller RH (2010) Nanocrystals: industrially feasible multifunctional formulation technology for poorly soluble actives. Int J Pharm 399(1–2):129–39

    Article  PubMed  CAS  Google Scholar 

  • Shim J, Seok Kang H, Park WS, Han SH, Kim J, Chang IS (2004) Transdermal delivery of mixnoxidil with block copolymer nanoparticles. J Control Release 97(3):477–84

    Google Scholar 

  • Souza LG, Silva EJ, Martins AL, Mota MF, Braga RC, Lima EM et al (2011) Development of topotecan loaded lipid nanoparticles for chemical stabilization and prolonged release. Eur J Pharm Biopharm 79(1):189–96

    Article  PubMed  CAS  Google Scholar 

  • Stern S, McNeil S (2008) Nanotechnology safety concerns revisited. Toxicol Sci 101(1):4–21

    Article  PubMed  CAS  Google Scholar 

  • Verma DD, Verma S, Blume G, Fahr A (2003) Particle size of liposomes influences dermal delivery of substances into skin. Int J Pharm 258(1–2):141–51

    Article  PubMed  CAS  Google Scholar 

  • Williams AC, Barry BW (2004) Penetration enhancers [Review]. Adv Drug Deliv Rev 56(5):603–18

    Article  PubMed  CAS  Google Scholar 

  • Wosicka H, Cal K (2010) Targeting to the hair follicles: current status and potential. J Dermatol Sci 57(2):83–9

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Griffin P, Price GJ, Guy RH (2009a) Preparation and in vitro evaluation of topical formulations based on polystyrene-poly-2-hydroxyl methacrylate nanoparticles. Mol Pharm 6(5):1449–56

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Price GJ, Guy RH (2009b) Disposition of nanoparticles and an associated lipophilic permeant following topical application to the skin. Mol Pharm 6(5):1441–8

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay K. Banga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Abla, M.J., Singh, N.D., Banga, A.K. (2016). Role of Nanotechnology in Skin Delivery of Drugs. In: Dragicevic, N., Maibach, H. (eds) Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47862-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47862-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47861-5

  • Online ISBN: 978-3-662-47862-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics