Skip to main content

Neutronensterne – die kompaktesten Sterne

  • Chapter
  • First Online:
Gravitation und Physik kompakter Objekte
  • 3457 Accesses

Zusammenfassung

Kurz nach der Entdeckung des Neutrons durch Chadwick haben Landau, Baade und Zwicky 1932 die Möglichkeit diskutiert, dass es auch Sterne geben könnte, die aus Neutronen bestehen, in Analogie zu den Weißen Zwergen, die ihren Druck durch den Quantendruck der Elektronen aufbauen. Normalerweise sind Neutronen instabil und zerfallen in 10,8 Minuten in ein Proton und ein Elektron unter Aussendung eines Antineutrinos. Deshalb kann Neutronenmaterie nur im Gleichgewicht mit Protonen und Elektronen existieren.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. Feynman RP, Metropolis N, Teller E (1949) Equation of State of Elements Based on the Generalized Fermi-Thomas Theory. Phys. Rev. 75, 1561.

    Article  ADS  MATH  Google Scholar 

  2. Akmal A, Pandharipande VR, Ravenhall DG (1998) Equation of state of nuclear matter and neutron star structure. Phys. Rev. C 58, 1804 (APR)

    ADS  Google Scholar 

  3. Antoniadis J (2014) Gravitational Radiation from Compact Binary Pulsars. In: Gravitational Wave Astrophysics. Astrophysics and Space Science Proceedings 40, 1–22; arXiv:1407.3404

    Google Scholar 

  4. Bai Xue-Ning, Spitkovsky A (2010) Modeling of Gamma-Ray Pulsar Light Curves with Force-Free Magnetic Field. ApJ 715, 1282–1301; arXiv:0910.5741

    Google Scholar 

  5. Bauswein A (2206) Die Struktur schnell rotierender Neutronensterne. Diplomarbeit, Technische Universität Darmstadt

    Google Scholar 

  6. Baym G, Pethick CJ, Sutherland P (1971) The ground state of matter at high densities – Equation of state and stellar models. ApJ 170, 299

    Article  ADS  Google Scholar 

  7. Baym G, Bethe HA, Pethick CJ (1971) Neutron star matter. Nucl. Phys. A 175, 225

    Google Scholar 

  8. Breton RP et al (2008) Relativistic Spin Precession in the Double Pulsar. Science 321, 104

    Article  ADS  Google Scholar 

  9. Bühler R, Blandford RD (2014) The surprising Crab pulsar and its nebula: A Review. Report Prog. Phys. 77, 066901; arXiv:1309.7046

    Google Scholar 

  10. Camenzind M (2007) Compact Objects in Astrophysics – White Dwarfs, Neutron Stars and Black Holes. Springer-Verlag, Heidelberg

    Google Scholar 

  11. Chen AY, Beloborodov AM (2014) Electrodynamics of axisymmetric pulsar magnetosphere with electron-positron discharge: a numerical experiment. arXiv:1406.7834

    Google Scholar 

  12. Cottam J, Paerels F, Mendez M (2002) Gravitationally redshifted absorption lines in the X-ray burst spectra of a neutron star. Nature 420, 51–54

    Article  ADS  Google Scholar 

  13. Damour T, Taylor JH (1992) Strong-field tests of relativistic gravity and binary pulsars. Phys. Rev. D 45, 1840

    Article  ADS  Google Scholar 

  14. Douchin F, Haensel P (2001) A unified EoS of dense matter and neutron star structure. A & A, 380, 151 (SLy4)

    Article  ADS  Google Scholar 

  15. Elshamouti KG et al (2013) Measuring the Cooling of the Neutron Star in Cassiopeia A with all Chandra X-ray Observatory Detectors. ApJ 777, 22; arXiv:1306.3387

    Google Scholar 

  16. Gandolfi S et al (2012) The equation of state of neutron matter, symmetry energy, and neutron star structure. arXiv:1307.5815; EPJA 50 (2014) 10

    Google Scholar 

  17. Harding A (2013) The Neutron Star Zoo. Frontiers of Physics 8, 679–692; ar- Xiv:1302.0869;

    Google Scholar 

  18. Hynes RI (2010) Multiwavelength Observations of Accretion in Low-Mass X-ray Binary Systems. arXiv:1010.5770

    Google Scholar 

  19. Keane EF, Bhattacharya B, Kramer M et al (2015) A Cosmic Census of Radio Pulsars with the SKA. Proceedings of Science, PoS(AASKA14)040; arXiv:1501.00056

    Google Scholar 

  20. Kiziltan B, Kottas A, De Yoreo M, Thorsett S E (2013) The Neutron Star Mass Distribution. ApJ 778, 66; arXiv:1309.6635

    Google Scholar 

  21. Kojo T, Powell PD, Song Y, Baym G (2014) Phenomenological QCD equation of state for massive neutron stars. arXiv:1412.1108

    Google Scholar 

  22. Kramer M (2006) Pulsare als kosmische Uhren. Sterne und Weltraum 45, 30–37

    Google Scholar 

  23. Lastowiecki R, Blaschke D, Fischer T, Klahn T (2015) Quark matter in high-mass neutron stars? arXiv:1503.04832

    Google Scholar 

  24. Lattimer JM, Steiner AW (2014) Constraints on the Symmetry Energy Using the Mass-Radius Relation of Neutron Stars. arXiv:1403.1186

    Google Scholar 

  25. Li J, Spitkovsky A, Tchekhovskoy A (2012) Resistive Solutions for Pulsar Magnetospheres. ApJ 746, 60; arXiv:1107.0979

    Google Scholar 

  26. Lyne AG, Kramer M (2005) Gravitational Labs in the Sky. Physics World 3, 29–30

    Article  Google Scholar 

  27. Manchester RN, Hobbs GB, Teoh A, Hobbs M (2005) The ATNF Pulsar Catalogue. AJ 129, 1993–2006

    Article  ADS  Google Scholar 

  28. Ransom SM et al (2014) A millisecond pulsar in a stellar triple system. ar- Xiv:1401.0535; Nature Jan. 5, 2014

    Google Scholar 

  29. Shternin PS et al (2011) Cooling neutron star in the Cassiopeia A supernova remnant: Evidence for superfluidity in the core. Mon. Not. Roy. Astron. Soc. 412, L108-L112; arXiv:1012.0045

    Google Scholar 

  30. Steiner AW, Lattimer JM, Brown EF (2010) The Equation of State from Observed Masses and Radii of Neutron Stars. ApJ 722, 33–54; arXiv:1005.0811;

    Google Scholar 

  31. Viganò D (2013) Magnetic fields in neutron stars. PhD thesis University of Alicante; arXiv:1310.1243

    Google Scholar 

  32. Viganò D et al (2015) Magnetic Fields in Neutron Stars. arXiv:1501.06735

    Google Scholar 

  33. Weisberg JM, Nice DJ, Taylor JH (2010) Timing measurements of the relativistic binary pulsar PSR B1913+16. ApJ 722, 1030–1034; arXiv:1011.0718

    Google Scholar 

  34. Pan Yuanyue, Wang Na, Zhang Chengmin (2013) Binary Pulsars in Magnetic Field versus Spin Period Diagram. Astroph. Space Science 346, 119–125; arXiv:1304.2489

    Google Scholar 

  35. Pulsarkatalog: www.atnf.csiro.au/people/pulsar/psrcat

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Camenzind .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Camenzind, M. (2016). Neutronensterne – die kompaktesten Sterne. In: Gravitation und Physik kompakter Objekte. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47839-4_6

Download citation

Publish with us

Policies and ethics