Social Media Applications for Knowledge Exchange in Organizations

Requirements, Application, and User Acceptance in Industrial and Scientific Settings
  • André Calero Valdez
  • Anne Kathrin Schaar
  • Jens Bender
  • Susanne Aghassi
  • Günther Schuh
  • Martina Ziefle
Chapter
Part of the Intelligent Systems Reference Library book series (ISRL, volume 95)

Abstract

With the broad success of Web 2.0, organizations have become interested in using social media for professional applications. To date related research has mainly focused on the social impact of social media. However, little is known about the circumstances under which employees will invest time in using social media, especially the perceived benefits and its barriers within enterprises need further research. Different aspects of organizational knowledge management bring along different requirements for social-media-based solutions. This chapter focusses on providing both a theoretical background on social media acceptance and concepts, as well as empirical findings from practice and research investigating acceptance-relevant needs and demands of social media users in different contexts. Findings from practice corroborate that the complexity of the plethora of communication paths can be supported by social media. Findings from research reveal that regarding the users’ (emotive) needs is critical when dealing with sensitive communication/data. Combining both practice and research tries to bridge the knowledge gap existing in fast paced developments like social media.

Keywords

Social media Knowledge management Technology acceptance Personality User centred design Talent onboarding Technology platforms 

References

  1. 1.
    Bloom, D.E., Canning, D.: Global demographic change: Dimensions and economic significance. Working Paper 10817, National Bureau of Economic Research (October 2004)Google Scholar
  2. 2.
    Sturgeon, T.J.: Does manufacturing still matter? The organizational delinking of production from innovation. (1997)Google Scholar
  3. 3.
    Howells, J.R.: Tacit knowledge, innovation and economic geography. Urban Stud. 39(5–6), 871–884 (2002)CrossRefGoogle Scholar
  4. 4.
    Granovetter, M.S.: The strength of weak ties. American Journal of Sociology, pp. 1360–1380. (1973)Google Scholar
  5. 5.
    Rogers, E.M., Adhikarya, R.: Diffusion of innovations: an up-to-date review and commentary. Commun. Yearbook 3, 67–81 (1979)Google Scholar
  6. 6.
    Holzinger, A.: Human-computer interaction and knowledge discovery (HCI-KDD): what is the benefit of bringing those two fields to work together? In: Availability, Reliability, and Security in Information Systems and HCI, pp. 319–328. Springer, Berlin (2013)Google Scholar
  7. 7.
    Alagöz, F., Calero Valdez, A., Wilkowska, W., Ziefle, M., Dorner, S., Holzinger, A.: From cloud computing to mobile internet, from user focus to culture and hedonism: the crucible of mobile health care and wellness applications. In: 2010 5th International Conference on Pervasive Computing and Applications (ICPCA), pp. 38–45. IEEE (2010)Google Scholar
  8. 8.
    Ardichvili, A., Page, V., Wentling, T.: Motivation and barriers to participation in virtual knowledge-sharing communities of practice. J. Knowl. Manage. 7(1), 64–77 (2003)CrossRefGoogle Scholar
  9. 9.
    Bughin, J., Manyika, J., et al.: How Businesses are Using Web 2.0: A McKinsey Global Survey. McKinsey Quarterly Web Exclusive. McKinsey and Company (2007)Google Scholar
  10. 10.
    Calero Valdez, A., Schaar, A.K., Ziefle, M.: Personality influences on etiquette requirements for social media in the work context. In: Human Factors in Computing and Informatics, pp. 427–446. Springer, Berlin (2013)Google Scholar
  11. 11.
    Majchrzak, A., Wagner, C., Yates, D.: Corporate wiki users: results of a survey. In: Proceedings of the 2006 International Symposium on Wikis. WikiSym ‘06, pp. 99–104. ACM, New York (2006)Google Scholar
  12. 12.
    Hemsley, J., Mason, R.M.: The nature of knowledge in the social media age: implications for knowledge management models. In: 2012 45th Hawaii International Conference on System Science (HICSS), pp. 3928–3937. IEEE (2012)Google Scholar
  13. 13.
    Facebook: Facebook reports first quarter 2013 results. Accessed September 12th 2013: http://investor.fb.com/releasedetail.cfm?ReleaseID=761090 (2013)
  14. 14.
    Java, A., Song, X., Finin, T., Tseng, B.: Why we twitter: understanding microblogging usage and communities. In: Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 Workshop on Web Mining and Social Network Analysis, pp. 56–65. ACM (2007)Google Scholar
  15. 15.
    Sigurbjörnsson, B., Van Zwol, R.: Flickr tag recommendation based on collective knowledge. In: Proceedings of the 17th international conference on World Wide Web, pp. 327–336. ACM (2008)Google Scholar
  16. 16.
    Drucker, P.F.: Knowledge-worker productivity: the biggest challenge. The knowledge management yearbook 2000–2001 (1999)Google Scholar
  17. 17.
    Maier, R.: Knowledge Management Systems: Information and Communication Technologies for Knowledge Management. Springer (2007)Google Scholar
  18. 18.
    Davenport, T.H., Pruzak, L.: Working Knowledge: How Organizations Manage What They Know. Harvard Business Press (2000)Google Scholar
  19. 19.
    Paroutis, S., Al Saleh, A.: Determinants of knowledge sharing using web 2.0 technologies. J. Knowl. Manage. 13(4), 52–63 (2009)Google Scholar
  20. 20.
    Richter, A., Stocker, A., Müller, S., Avram, G.: Knowledge management goals revisited—a cross-sectional analysis of social software adoption in corporate environments. In: Proceedings of the 22nd Australasian Conference on Information Systems. (2011)Google Scholar
  21. 21.
    Maier, R., Remus, U.: Towards a framework for knowledge management strategies: process orientation as strategic starting point. In: Proceedings of the 34th Annual Hawaii International Conference on System Sciences, 2001, p. 10. IEEE (2001)Google Scholar
  22. 22.
    Prusak, L.: Where did knowledge management come from? IBM Syst. J. 40(4), 1002–1007 (2001)CrossRefGoogle Scholar
  23. 23.
    Kaiser, S., Müller-Seitz, G., Lopes, M.P., e Cunha, M.P.: Weblog-technology as a trigger to elicit passion for knowledge. Organization 14(3), 391–412 (2007)Google Scholar
  24. 24.
    Giglia, E.: Academic social networks: its time to change the way we do research. Eur. J. Phys. Rehabil. Med. 47(2), 345–349 (2011)Google Scholar
  25. 25.
    Bauer, T.N., Erdogan, B.: Organizational socialization: The effective onboarding of new employees. (2011)Google Scholar
  26. 26.
    Aberdeen Group: Onboarding 2013—A New Look at New Hires. http://aberdeen.com/Aberdeen-Library/8383/RA-strategic-onboarding-talent.aspx (2013)
  27. 27.
    Willyerd, K.: Social tools can improve employee onboarding. http://blogs.hbr.org/cs/2012/12/social_tools_can_improve_e.html (December 2012)
  28. 28.
    Schuh, G., Aghassi, S.: Technology transfer portals: a design model for supporting technology transfer via social software solutions. In: Proceedings of the IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). (2013)Google Scholar
  29. 29.
    Schuh, G., Wemhöner, H., Drescher, T.: Technologiemanagement als lebensfähiges System gestalten. In: Mieke, C., Braunisch, D. (eds.) Innovative Produktionswirtschaft, pp. 59–77. Logos Verlag, Berlin (2012)Google Scholar
  30. 30.
    Schuh, G., Klappert, S. (eds.): Technologiemanagement. Produktion und Management. Springer, Heidlberg (2012)Google Scholar
  31. 31.
    Schuh, G., Aghassi, S., Calero Valdez, A.: Supporting technology transfer via web-based platforms. In: Technology Management in the IT-Driven Services, Proceedings of the PICMET’ 2013 Conference. (2013)Google Scholar
  32. 32.
    Czarnitzki, D., Licht, G., Rammer, C., Spielkamp, A.: Rolle und Bedeutung von Intermediären in Wissens-und Technologietransfer. ifo Schnelldienst 54(04), 40–49 (2001)Google Scholar
  33. 33.
    Leupold, M.: Technologietransfer im Web 2.0—wie das Wissen heute in die Welt kommen kann. Wissensmanagement 1 (2010) 21ffGoogle Scholar
  34. 34.
    Fishbein, M., Ajzen, I., Hinkle, R.: Predicting and understanding voting in american elections: effects of external variables. Understanding attitudes and predicting social behavior, pp. 173–195. (1980)Google Scholar
  35. 35.
    Davis, F.D.: Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly 13(3), 319–340 (1989). ArticleType: research-article/Full publication date: Sep., 1989/Copyright (c) 1989 Management Information Systems Research Center, University of MinnesotaGoogle Scholar
  36. 36.
    Bagozzi, R.P., Davis, F.D., Warshaw, P.R.: Development and test of a theory of technological learning and usage. Hum. Relat. 45(7), 659–686 (1992)CrossRefGoogle Scholar
  37. 37.
    Lee, Y., Kozar, K.A., Larsen, K.R.: The technology acceptance model: past, present, and future. Commun. Assoc. Inf. Syst. 12, 780 (2003)Google Scholar
  38. 38.
    Pedersen, P.: An adoption framework for mobile commerce. Towards the E-Society, 643–655 (2002)Google Scholar
  39. 39.
    Lu, J., Yu, C.S., Liu, C., Yao, J.E.: Technology acceptance model for wireless internet. Internet Res. 13(3), 206–222 (2003)CrossRefGoogle Scholar
  40. 40.
    Yang, H., Yoo, Y.: It’s all about attitude: revisiting the technology acceptance model. Decis. Support Syst. 38(1), 19–31 (2004)CrossRefGoogle Scholar
  41. 41.
    Venkatesh, V., Morris, M.G., Davis, G.B., Davis, F.D.: User acceptance of information technology: Toward a unified view. MIS Quarterly 27(3), 425–478 (2003). ArticleType: research-article/Full publication date: Sep., 2003/Copyright (c) 2003 Management Information Systems Research Center, University of MinnesotaGoogle Scholar
  42. 42.
    Hartwick, J., Barki, H.: Explaining the role of user participation in information system use. Manage. Sci. 40(4), 440–465 (1994)CrossRefGoogle Scholar
  43. 43.
    Preece, J., Nonnecke, B., Andrews, D.: The top five reasons for lurking: improving community experiences for everyone. Comp. Hum. Behav. 20(2), 201–223 (2004)CrossRefGoogle Scholar
  44. 44.
    Schmitz-Urban, A., Bender, J., Gudergan, G., Schaar, A.K., Calero Valdez, A., Löcker, A.K., Eraß me, D., Hofmann, J., Ziefle, M., Jakobs, E.M.: Einsatz von Experten-Communitys zur Sicherung der Innovationsfähigkeit im demografischen Wandel. In Jeschke, S., ed.: Innovationsfähigkeit im demografischen Wandel, pp. 87–104. Campus Verlag, Frankfurt/New YorkGoogle Scholar
  45. 45.
    Schaar, A.K., Calero Valdez, A., Ziefle, M.: The impact of user diversity on the willingness to disclose personal information in social network services. In: Human Factors in Computing and Informatics, pp. 174–193. Springer (2013)Google Scholar
  46. 46.
    Costa, P.T., McCrae, R.R.: Normal personality assessment in clinical practice: the neo personality inventory. Psychol. Assess. 4(1), 5 (1992)CrossRefGoogle Scholar
  47. 47.
    Amichai-Hamburger, Y., Vinitzky, G.: Social network use and personality. Comput. Hum. Behav. 26(6), 1289–1295 (2010)CrossRefGoogle Scholar
  48. 48.
    Correa, T., Hinsley, A.W., de Ziga, H.G.: Who interacts on the web?: The intersection of users’ personality and social media use. Comput. Hum. Behav. 26(2), 247–253 (2010)CrossRefGoogle Scholar
  49. 49.
    Hughes, D.J., Rowe, M., Batey, M., Lee, A.: A tale of two sites: Twitter vs. facebook and the personality predictors of social media usage. Comput. Hum. Behav. 28(2), 561–569 (2012)CrossRefGoogle Scholar
  50. 50.
    Rothwell, J.D.: In the Company of Others: An Introduction to Communication. McGraw-Hill Humanities/Social Sciences/Languages (1999)Google Scholar
  51. 51.
    Brown, P., Levinson, S.C.: Politeness: Some universals in language usage, vol. 4. Cambridge University Press, Cambridge (1987)Google Scholar
  52. 52.
    Brecher, C., Jeschke, S., Schuh, G., Aghassi, S., Arnoscht, J., Bauhoff, F., Fuchs, S., Jooß, C., Karmann, W.O., Kozielski, S., et al.: Integrative Production Technology for High-Wage Countries. Springer (2012)Google Scholar
  53. 53.
    Welter, F., Jooß, C., Richert, A., Jeschke, S., Brecher, C.: Organisation and management of integrative research. In: Automation, Communication and Cybernetics in Science and Engineering 2011/2012, pp. 275–285. Springer (2013)Google Scholar
  54. 54.
    Jooß, C., Welter, F., Richert, A., Jeschke, S., Brecher, C.: A management approach for interdisciplinary research networks in a knowledge-based society—Case study of the cluster of excellence “Integrative Production Technology for High-wage Countries”. In: Automation, Communication and Cybernetics in Science and Engineering 2011/2012, pp. 375–382. Springer (2013)Google Scholar
  55. 55.
    Welter, F., Vossen, R., Richert, A., Isenhardt, I.: Network management for clusters of excellence-a balanced-scorecard approach as a performance measurement tool. In: Automation, Communication and Cybernetics in Science and Engineering 2009/2010, pp. 195–207. Springer (2011)Google Scholar
  56. 56.
    Campbell, D.T.: Ethnocentrism of disciplines and the fish-scale model of omniscience. In: Derry, S.J., Schunn, C.D., Gernsbacher, M.A. (Eds.) Interdisciplinary Collaboration: An Emerging Cognitive Science, pp. 3–21. Psychology Press (2001)Google Scholar
  57. 57.
    Jirotka, M., Lee, C.P., Olson, G.M.: Supporting scientific collaboration: methods, tools and concepts. Comput. Support. Coop. Work (CSCW) 22(4–6), 667–715 (2013)CrossRefGoogle Scholar
  58. 58.
    Zheng, X., Ke, G., Zeng, D.D., Ram, S., Lu, H.: Next-generation team-science platform for scientific collaboration. Intell. Syst. IEEE 26(6), 72–76 (2011)CrossRefGoogle Scholar
  59. 59.
    Li, J., Muller-Tomfelde, C., Robertson, T.: Designing for distributed scientific collaboration: a case study in an animal health laboratory. In: 2012 45th Hawaii International Conference on System Science (HICSS), pp. 373–381. IEEE (2012)Google Scholar
  60. 60.
    Müller-Tomfelde, C., Li, J., Hyatt, A.: An integrated communication and collaboration platform for distributed scientific workgroups. In: Human-Computer Interaction—INTERACT 2011, pp. 248–258. Springer (2011)Google Scholar
  61. 61.
    Alves, T.P., Borges, M.R., Vivacqua, A.S.: An environment to support the discovery of potential partners in a research group. In: 2013 IEEE 17th International Conference on Computer Supported Cooperative Work in Design (CSCWD), pp. 344–349. IEEE (2013)Google Scholar
  62. 62.
    Romano, P., Giugno, R., Pulvirenti, A.: Tools and collaborative environments for bioinformatics research. Briefings Bioinf. 12(6), 549–561 (2011)CrossRefGoogle Scholar
  63. 63.
    Calero Valdez, A., Schaar, A.K., Ziefle, M.: State of the (net) work address developing criteria for applying social networking to the work environment. Work: A J. Prev. Assess. Rehabil. 41, 3459–3467 (2012)Google Scholar
  64. 64.
    Schaar, A.K., Calero Valdez, A., Ziefle, M., Eraßme, D., Löcker, A.K., Jakobs, E.M.: Reasons for using social networks professionally. In: Social Computing and Social Media, pp. 385–396. Springer (2014)Google Scholar
  65. 65.
    Calero Valdez, A., Schaar, A.K., Ziefle, M., Holzinger, A.: Enhancing interdisciplinary cooperation by social platforms. In: Human Interface and the Management of Information. Information and Knowledge Design and Evaluation, pp. 298–309. Springer (2014)Google Scholar
  66. 66.
    Vaegs, T., Welter, F., Jooß, C., Leisten, I., Richert, A., Jeschke, S.: Cluster terminologies for promoting interdisciplinary scientific cooperation in clusters of excellence. INTED2013 Proceedings, pp. 5805–5812. (2013)Google Scholar
  67. 67.
    Jooß, C., Welter, F., Leisten, I., Richert, A., Schaar, A., Calero Valdez, A., Nick, E., Prahl, U., Jansen, U., Schulz, W., Ziefle, M., Jeschke, S.: Scientific cooperation engineering in the cluster of excellence integrative production technology for high-wage countries at RWTH Aachen University. In: ICERI2012 Proceedings. 5th International Conference of Education, Research and Innovations, IATED (19–21 November, 2012)Google Scholar
  68. 68.
    Schaar, A.K., Calero Valdez, A., Ziefle, M.: Publication network visualisation as an approach for interdisciplinary innovation management. In: Professional Communication Conference (IPCC), 2013 IEEE International. (2013)Google Scholar
  69. 69.
    Calero Valdez, A., Schaar, A.K., Ziefle, M., Holzinger, A., Jeschke, S., Brecher, C.: Using mixed node publication network graphs for analyzing success in interdisciplinary teams. In: Active Media Technology, pp. 606–617. Springer (2012)Google Scholar
  70. 70.
    Calero Valdez, A., Schaar, A.K., Ziefle, M.: Measuring interdisciplinary performance by analyzing mixed node publication networks. In Hinze, S., Lottmann, A., eds.: Proceedings of the 18th International Conference on Science and Technology Indicators: Translational twists and turns: Science as a socio-economic endeavor, pp. 594–597. IFQ, Berlin (2013)Google Scholar
  71. 71.
    Wilkowska, W., Ziefle, M.: Privacy and data security in E-health: Requirements from the users perspective. Health Inf. J. 18(3), 191–201 (2012)CrossRefGoogle Scholar
  72. 72.
    Arning, K., Gaul, S., Ziefle, M.: “Same same but different” How service contexts of mobile technologies shape usage motives and barriers. In: HCI in Work and Learning, Life and Leisure, pp. 34–54. Springer (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • André Calero Valdez
    • 1
  • Anne Kathrin Schaar
    • 1
  • Jens Bender
    • 2
  • Susanne Aghassi
    • 3
  • Günther Schuh
    • 3
  • Martina Ziefle
    • 1
  1. 1.Human-Computer Interaction CenterRWTH Aachen UniversityAachenGermany
  2. 2.IntraWorlds GmbHMunichGermany
  3. 3.Fraunhofer Institute for Production Technology IPTAachenGermany

Personalised recommendations