Skip to main content

Composite Finite-Time Containment Control for Disturbed Second-Order Multi-agent Systems

  • Chapter
  • First Online:
Complex Systems and Networks

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

In this chapter, the distributed finite-time containment control problem is investigated for second-order multi-agent systems with external disturbances. By combining finite-time control and finite-time disturbance observer techniques together, a kind of feedforward-feedback composite distributed controllers are proposed. Under these distributed controllers, the effects of the disturbances on the system states are removed in a finite time and the followers globally converge to the convex hull spanned by the leaders in a finite time as well. Simulations illustrate the effectiveness of the proposed control algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ou, M., Du, H., Li, S.: Finite-time formation control of multiple nonholonomic mobile robots. Int. J. Robust Nonlinear Control 24(1), 140–165 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dong, X., Yu, B., Shi, Z., Zhong, Y.: Time-varying formation control for unmanned aerial vehicles: theories and applications. IEEE Trans. Control Syst. Technol. 23(1), 340–348 (2015)

    Article  Google Scholar 

  3. Li, Z., Li, J., Kang, Y.: Adaptive robust coordinated control of multiple mobile manipulators interacting with rigid environments. Automatica 46(12), 2028–2034 (2010)

    Article  MathSciNet  Google Scholar 

  4. Zhang, W., Feng, G., Yu, L.: Multi-rate distributed fusion estimation for sensor networks with packet losses. Automatica 48(9), 2016–2028 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Pettersen, K.Y., Gravdahl, J.T., Nijmeijer, H.: Group Coordination and Cooperative Control. Springer, Berlin (2006)

    Book  MATH  Google Scholar 

  6. Lü, J., Chen, G.: A time-varying complex dynamical network model and its controlled synchronization criteria. IEEE Trans. Autom. Control 50(6), 841–846 (2005)

    Article  Google Scholar 

  7. Zhou, J., Lu, J., Lü, J.: Adaptive synchronization of an uncertain complex dynamical network. IEEE Trans. Autom. Control 51(4), 652–656 (2006)

    Article  Google Scholar 

  8. Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)

    Article  MathSciNet  Google Scholar 

  9. Hong, Y., Hu, J., Gao, L.: Tracking control for multi-agent consensus with an active leader and variable topology. Automatica 42(7), 1177–1182 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, Y., Lü, J., Han, F., Yu, X.: On the cluster consensus of discrete-time multi-agent systems. Syst. Control Lett. 60(7), 517–523 (2011)

    Article  MATH  Google Scholar 

  11. Ren, W.: On consensus algorithms for double-integrator dynamics. IEEE Trans. Autom. Control 53(6), 1503–1509 (2008)

    Article  Google Scholar 

  12. Yu, W., Ren, W., Zheng, W.X., Chen, G., Lü, J.: Distributed control gains design for consensus in multi-agent systems with second-order nonlinear dynamics. Automatica 49(7), 2107–2115 (2013)

    Article  MathSciNet  Google Scholar 

  13. Li, S., Du, H., Lin, X.: Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics. Automatica 47(8), 1706–1712 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, S., Wang, X.: Finite-time consensus and collision avoidance control algorithms for multiple AUVs. Automatica 49(11), 3359–3367 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Tian, Y., Zhang, Y.: High-order consensus of heterogeneous multi-agent systems with unknown communication delays. Automatica 48(6), 1205–1212 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Khoo, S., Xie, L., Zhao, S., Man, Z.: Multi-surface sliding control for fast finite-time leader-follower consensus with high order SISO uncertain nonlinear agents. Int. J. Robust Nonlinear Control 24(16), 2388–2404 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhang, X., Liu, L., Feng, G.: Leader-follower consensus of time-varying nonlinear multi-agent systems. Automatica 52, 8–14 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Couzin, I.D., Krause, J., Franks, N.R., Levin, S.A.: Effective leadership and decision-making in animal groups on the move. Nature 433(3), 513–516 (2005)

    Article  Google Scholar 

  19. Notarstefano, G., Egerstedt, M., Haque, M.: Containment in leader-follower networks with switching communication topologies. Automatica 47(5), 1035–1040 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, H., Xie, G., Wang, L.: Necessary and sufficient conditions for containment control of networked multi-agent systems. Automatica 48(7), 1415–1422 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lou, Y., Hong, Y.: Target containment control of multi-agent systems with random switching interconnection topologies. Automatica 48(5), 879–885 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, Z., Ren, W., Liu, X., Fu, M.: Distributed containment control of multi-agent systems with general linear dynamics in the presence of multiple leaders. Int. J. Robust Nonlinear Control 23(5), 534–547 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wen, G., Duan, Z., Zhao, Y., Yu, W., Cao, J.: Robust containment tracking of uncertain linear multi-agent systems: a non-smooth control approach. Int. J. Control 87(12), 2522–2534 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Bhat, S.P., Bernsteinm, D.S.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38(3), 751–766 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ding, S., Li, S.: Stabilization of the attitude of a rigid spacecraft with external disturbances using finite-time control techniques. Aerosp. Sci. Technol. 13(4), 256–265 (2009)

    Article  Google Scholar 

  26. Meng, Z., Ren, W., You, Z.: Distributed finite-time attitude containment control for multiple rigid bodies. Automatica 46(12), 2092–2099 (2010)

    Article  MathSciNet  Google Scholar 

  27. Cao, Y., Stuart, D., Ren, W., Meng, Z.: Distributed containment control for multiple autonomous vehicles with double-integrator dynamics: algorithms and experiments. IEEE Trans. Control Syst. Technol. 19(4), 929–938 (2011)

    Article  Google Scholar 

  28. He, X., Wang, Q., Yu, W.: Finite-time containment control for second-order multiagent systems under directed topology. IEEE Trans. Circuits Syst. II: Express Br. 61(8), 619–623 (2014)

    Article  Google Scholar 

  29. Wang, X., Li, S., Shi, P.: Distributed finite-time containment control for double-integrator multi-agent systems. IEEE Trans. Cybern. 44(9), 1518–1528 (2014)

    Article  Google Scholar 

  30. Li, S., Yang, J., Chen, W.-H., Chen, X.: Disturbance Observer-Based Control: Methods and Applications. CRC Press, Boca Raton (2014)

    Google Scholar 

  31. Chen, W.-H.: Disturbance observer based control for nonlinear system. IEEE/ASME Trans. Mechatron. 9(4), 706–710 (2004)

    Article  Google Scholar 

  32. Guo, L., Chen, W.-H.: Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach. Int. J. Robust Nonlinear Control 15(3), 109–125 (2005)

    Article  MATH  Google Scholar 

  33. Kim, W., Shin, D., Choo, C.C.: Microstepping using a disturbance observer and a variable structure controller for permanent-magnet stepper motors. IEEE Trans. Ind. Electron. 60(7), 2689–2699 (2013)

    Article  Google Scholar 

  34. Yang, J., Li, S., Yu, X.: Sliding-mode control for systems with mismatched uncertainties via a disturbance observer. IEEE Trans. Ind. Electron. 60(1), 160–169 (2013)

    Article  Google Scholar 

  35. Ginoya, D., Shendge, P.D., Phadke, S.B.: Sliding mode control for mismatched uncertain systems using an extended disturbance observer. IEEE Trans. Ind. Electron. 61(4), 1983–1992 (2014)

    Article  Google Scholar 

  36. Li, S., Sun, H., Yang, J., Yu, X.: Continuous finite-time output regulation for disturbed systems under mismatching condition. IEEE Trans. Autom. Control 60(1), 277–282 (2015)

    Article  MathSciNet  Google Scholar 

  37. Yang, H., Zhang, Z., Zhang, S.: Consensus of second-order multi-agent systems with exogenous disturbances. Int. J. Robust Nonlinear Control 21(9), 945–956 (2011)

    Article  MATH  Google Scholar 

  38. Zhang, X., Liu, X.: Further results on consensus of second-order multi-agent systems with exogenous disturbance. IEEE Trans. Circuits Syst. I: Regul. Papers 60(12), 3215–3226 (2013)

    Article  Google Scholar 

  39. Huang, X., Lin, W., Yang, B.: Global finite-time stabilizaton of a class of uncertain nonlinear systems. Automatica 41(5), 881–888 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  40. Graham, A.: Kronecker products and matrix calculus with applications. Halsted Press, New York (1981)

    MATH  Google Scholar 

  41. Shtessel, Y.B., Shkolnikov, I.A., Levant, A.: Smooth second-order sliding modes: Missile guidance application. Automatica 43(8), 1470–1476 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Qian, C., Lin, W.: A continuous feedback approach to global strong stabilization of nonlinear systems. IEEE Trans. Autom. Control 46(7), 1061–1079 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant 61473080, the Science Foundation for Distinguished Young Scholars of Jiangsu Province under Grant BK20130018, the Priority Academic Program Development of Jiangsu Higher Education Institutions, the Fundamental Research Funds for the Central Universities, the China Postdoctoral Science Foundation under Grant 2015M570398, the Open Fund of Key Laboratory of Measurement and Control of Complex Systems of Engineering, Ministry of Education under Grant MCCSE2015B03, and the Natural Science Foundation of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shihua Li .

Editor information

Editors and Affiliations

Appendix

Appendix

Proof of Proposition 8.2: For brevity, denote \(d_{F}=[d^{T}_{1},\ldots ,d^{T}_{n}]^{T},\hat{d}_{F}=[\hat{d}^{T}_{1},\ldots ,\hat{d}^{T}_{n}]^{T},\tilde{d}_{F}=[\tilde{d}^{T}_{1},\ldots ,\tilde{d}^{T}_{n}]^{T}\). By Lemma 8.5, the DO (8.12) is finite-time convergent. So there is a constant h such that \(\Vert \tilde{d}_i(t)\Vert _2\le h,\forall i\in F,t\in [0,+\infty )\). Define \(W(x_{F},v_{F})=\frac{1}{2}x^{T}_{F}x_{F}+\frac{1}{2}v^{T}_{F}v_{F}\). \(\dot{W}\) along system (8.3) satisfies

$$\begin{aligned} \dot{ W}&=x^{T}_{F}v_{F}+v^{T}_{F}(u_{F}+d_{F})\le W+\sum ^{n}_{i=1}\Vert v_i\Vert _2(\Vert u^*_i\Vert _2+h). \end{aligned}$$
(8.34)

where \(u^*_i=u_i+\hat{d}_i\). From (8.11), it can be obtained that

$$\begin{aligned} \Vert u^*_{i}\Vert _2\le&~\Vert \dot{\hat{v}}^d_i\Vert _2+k_{2}\Vert \zeta _i^{2q-1}\Vert _2,~i\in F. \end{aligned}$$
(8.35)

where \(\zeta _i=(v_{i}-\hat{v}^d_i)^{1/q}+k_{1}^{1/q}\sum _{j\in F\cup L}a_{ij}(x_{i}-x_{j})\). According to Lemma 8.2, \(\forall y=[y_{1},\ldots ,y_{p}]^{T}\in \mathbb {R}^{p},a\ge 0\), the following holds

$$\begin{aligned} \Vert y^{a}\Vert _2=\left[ \sum ^{p}_{k=1}(y^{a}_{k})^{2}\right] ^{1/2}\le \sum ^{p}_{k=1}|y_{k}|^{a}\le p\left( \sum ^{p}_{k=1}y^{2}_{k}\right) ^{a/2}=p\Vert y\Vert _2^{a}. \end{aligned}$$
(8.36)

Clearly, (8.36) holds by letting \(y=(v_{i}-\hat{v}^d_i)^{1/q} +k_{1}^{1/q}\sum _{j\in F\cup L}a_{ij}(x_{i}-x_{j})\in \mathbb {R}^{p},a=2q-1\) or \(y=v_{i}-\hat{v}^d_i\in \mathbb {R}^{p},a=1/q\). Based on the fact \(0<2q-1<1\) and Lemma 8.2, it follows that \(p\Vert (v_{i}-\hat{v}^d_i)^{1/q} +k_{1}^{1/q}\sum _{j\in F\cup L}a_{ij}(x_{i}-x_{j})\Vert _2^{2q-1} \le p\Vert (v_{i}-\hat{v}^d_i)^{1/q}\Vert _2^{2q-1}+pk_{1}^{2-1/q}\Vert \sum _{j\in F\cup L}a_{ij}(x_{i}-x_{j})\Vert _2^{2q-1}\). Note that \(0<2-1/q<1\). Based on (8.36) and Lemma 8.2, it can be verified that \(\Vert (v_{i}-\hat{v}^d_i)^{1/q}\Vert _2^{2q-1}\le p^{2q-1}(\Vert v_{i}\Vert _2+\Vert \hat{v}^d_i\Vert _2)^{2-1/q}\le p^{2q-1}(\Vert v_{i}\Vert _2^{2-1/q}+\Vert \hat{v}^d_i\Vert _2^{2-1/q})\). In addition, \(\Vert \sum _{j\in F\cup L}a_{ij}(x_{i}-x_{j})\Vert _2\le \beta \sum ^{n+m}_{j=1}(\Vert x_{i}\Vert _2+\Vert x_{j}\Vert _2)=\beta (n+m)\Vert x_{i}\Vert _2+\beta \sum ^{n}_{j=1}\Vert x_{j}\Vert _2+\beta \sum ^{n+m}_{j=n+1}\Vert x_{j}\Vert _2\), where \(\beta =\max _{\forall i\in F}\left\{ \sum _{j\in F\cup L}a_{ij}\right\} \). Then it can be obtained from (8.36) that

$$\begin{aligned} p\Vert \zeta _i\Vert _2^{2q-1} \le&~ p^{2q}\left( \Vert v_{i}\Vert _2^{2-1/q}+\Vert \hat{v}^d_i\Vert _2^{2-1/q}\right) +pk_{1}^{2-1/q}\beta ^{2q-1}\nonumber \\&\times \left[ (n+m)^{2q-1}\Vert x_{i}\Vert _2^{2q-1}+\sum ^{n}_{j=1}\Vert x_{j}\Vert _2^{2q-1}+\sum ^{n+m}_{j=n+1}\Vert x_{j}\Vert _2^{2q-1}\right] ,~i\in F. \end{aligned}$$
(8.37)

Then, putting (8.35)–(8.37) together yields

$$\begin{aligned} \Vert u^*_{i}\Vert _2\le&~\Vert \dot{\hat{v}}^d_i\Vert _2+k_{2}p^{2q}\left( \Vert v_{i}\Vert _2^{2-1/q}+\Vert \hat{v}^d_i\Vert _2^{2-1/q}\right) +k_{2}pk_{1}^{2-1/q}\beta ^{2q-1}\nonumber \\&\times \left[ (n+m)^{2q-1}\Vert x_{i}\Vert _2^{2q-1}+\sum ^{n}_{j=1}\Vert x_{j}\Vert _2^{2q-1}+\sum ^{n+m}_{j=n+1}\Vert x_{j}\Vert _2^{2q-1}\right] \nonumber \\ \le&~ \delta _{1}+k_{2}p^{2q}\Vert v_{i}\Vert _2^{2-1/q}\nonumber \\&+k_{2}pk_{1}^{2-1/q}\beta ^{2q-1}\left[ (n+m)^{2q-1}\Vert x_{i}\Vert _2^{2q-1}+\sum ^{n}_{j=1}\Vert x_{j}\Vert _2^{2q-1}\right] ,~i\in F, \end{aligned}$$
(8.38)

where \( \delta _{1}=\Vert \dot{\hat{v}}^d_i\Vert _2+k_{2}p^{2q}\Vert \hat{v}^d_i\Vert _2^{2-1/q}+k_{2}pk_{1}^{2-1/q}\beta ^{2q-1}\sum ^{n+m}_{j=n+1}\Vert x_{j}\Vert _2^{2q-1}.\) Note that \(\dot{\hat{v}}^d_i=-\rho _1\mathrm{sig}^{\alpha }\left( \sum _{j\in F\cup L}a_{ij}(\hat{v}^d_i-\hat{v}^d_j)\right) -\rho _2\mathrm{sgn}\left( \sum _{j\in F\cup L}a_{ij}(\hat{v}^d_i-\hat{v}^d_j)\right) \). Due to global convergence of observer (8.4) and Assumption 6, the existence of \(\delta _{1}\) is guaranteed. Then it follows from (8.34), (8.38) and Lemma 8.3 that

$$\begin{aligned} \dot{ W}\le&~ W+(\delta _{1}+h)\sum ^{n}_{i=1}\Vert v_{i}\Vert _2+k_{2}p^{2q}\sum ^{n}_{i=1}\Vert v_{i}\Vert _2^{3-1/q}\nonumber \\&+\frac{k_{2}pk_{1}^{2-1/q}\beta ^{2q-1}}{2q}\sum ^{n}_{i=1}[(n+m)^{2q-1}+n]\Vert v_{i}\Vert _2^{2q}\nonumber \\&+\frac{k_{2}pk_{1}^{2-1/q}\beta ^{2q-1}(2q-1)}{2q}\sum ^{n}_{i=1} \left[ (n+m)^{2q-1}\Vert x_{i}\Vert _2^{2q}+\sum ^{n}_{j=1}\Vert x_{j}\Vert _2^{2q}\right] \nonumber \\ \le&~ W+(\delta _{1}+h)\sum ^{n}_{i=1}\Vert v_{i}\Vert _2+k_{2}p^{2q}\sum ^{n}_{i=1}\Vert v_{i}\Vert _2^{3-1/q}\nonumber \\&+\frac{k_{2}pk_{1}^{2-1/q}\beta ^{2q-1}[(n+m)^{2q-1}+n]}{2q}\sum ^{n}_{i=1}(\Vert x_{i}\Vert _2^{2q}+\Vert v_{i}\Vert _2^{2q}). \end{aligned}$$
(8.39)

In addition, it holds that \(\max \{\Vert x_{i}\Vert _2^{a},\Vert v_{i}\Vert _2^{a}\}\le (\Vert x_{i}\Vert _2^{2}+\Vert v_{i}\Vert _2^{2})^{a/2},\forall \ a\ge 0\). Then based on the fact \(0<q,(3-1/q)/2<1\) and (8.39), it follows that

$$\begin{aligned} \dot{ W}\le&~ W+(\delta _{1}+h)\sum ^{n}_{i=1}(\Vert x_{i}\Vert _2^{2}+\Vert v_{i}\Vert _2^{2})^{1/2}+k_{2}p^{2q}\sum ^{n}_{i=1}(\Vert x_{i}\Vert _2^{2}+\Vert v_{i}\Vert _2^{2})^{(3-1/q)/2}\nonumber \\&+\frac{k_{2}pk_{1}^{2-1/q}\beta ^{2q-1}[(n+m)^{2q-1}+n]}{q}\sum ^{n}_{i=1}(\Vert x_{i}\Vert _2^{2}+\Vert v_{i}\Vert _2^{2})^{q}. \end{aligned}$$
(8.40)

Note that \(\Vert x\Vert _{p}=\left( \sum ^{m}_{l=1}|x_{l}|^{p}\right) ^{1/p},\forall x=[x_{1},\ldots ,x_{m}]^{T}\) with \(p\ge 1,m\in N^{+}\) denotes p-norm in \(\mathbb {R}^{m}\). Based on the equivalence between any two different norms in \(\mathbb {R}^{p}\) and Lemma 8.2, there is \(\delta _{2}>0\) such that \(\sum ^{n}_{i=1}(\Vert x_{i}\Vert _2^{2}+\Vert v_{i}\Vert _2^{2})^{1/2}\le \sum ^{n}_{i=1}(\Vert x_{i}\Vert _2+\Vert v_{i}\Vert _2)\le \delta _{2} W^{1/2}\). Similarly, both \(\sum ^{n}_{i=1}(\Vert x_{i}\Vert _2^{2}+\Vert v_{i}\Vert _2^{2})^{(3-1/q)/2}\le \delta _{3} W^{(3-1/q)/2}\) and \(\sum ^{n}_{i=1}(\Vert x_{i}\Vert _2^{2}+\Vert v_{i}\Vert _2^{2})^{q}\le \delta _{4} W^{q}\) hold with appropriate \(\delta _{3}>0,\delta _{4}>0\). Then it follows from (8.40) that

$$\begin{aligned} \dot{ W}\le&~ W+(\delta _{1}+h)\delta _{2} W^{1/2}+k_{2}p^{2p}\delta _{3} W^{(3-1/q)/2}\nonumber \\&+\frac{k_{2}pk_{1}^{2-1/q}\beta ^{2q-1}[(n+m)^{2q-1}+n]\delta _{4}}{q} W^{q}. \end{aligned}$$
(8.41)

By Lemma 8.3, it holds that \(W^{b}= W^{b}\cdot 1^{1-b}\le b W+1-b,\forall \ 0<b\le 1\). Then it can be obtained from (8.41) that

$$\begin{aligned} \dot{ W}\le \delta _{5} W+\delta _{6}, \end{aligned}$$
(8.42)

where \(\delta _{5}=1+\frac{(\delta _{1}+h)\delta _{2}}{2}+\frac{3q-1}{2q}k_{2}p^{2q}\delta _{3}+k_{2}pk_{1}^{2-1/q}\beta ^{2q-1}[(n+m)^{2q-1}+n]\delta _{4}\) and \(\delta _{6}=\frac{(\delta _{1}+h)\delta _{2}}{2}+\frac{1-q}{2q}k_{2}p^{2q}\delta _{3}+\frac{k_{2}pk_{1}^{2-1/q}\beta ^{2q-1}[(n+m)^{2q-1}+n]\delta _{4}(1-q)}{q}\). By noting that \(\delta _{5},\delta _{6}\in (0,+\infty )\), it follows from (8.42) that W is bounded, which implies that \(x_{i}(t),v_{i}(t),i\in F\) are bounded \(\forall \ t\in [0,+\infty )\). This completes the proof.    \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, X., Li, S. (2016). Composite Finite-Time Containment Control for Disturbed Second-Order Multi-agent Systems. In: Lü, J., Yu, X., Chen, G., Yu, W. (eds) Complex Systems and Networks. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47824-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47824-0_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47823-3

  • Online ISBN: 978-3-662-47824-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics