Skip to main content

Deflection Routing in Complex Networks

  • Chapter
  • First Online:
Book cover Complex Systems and Networks

Part of the book series: Understanding Complex Systems ((UCS))

  • 2908 Accesses

Abstract

Deflection routing is a viable contention resolution scheme in buffer-less network architectures where contention is the main source of information loss. In recent years, various reinforcement learning-based deflection routing algorithms have been proposed. However, performance of these algorithms has not been evaluated in larger networks that resemble the autonomous system-level view of the Internet. In this Chapter, we compare performance of three reinforcement learning-based deflection routing algorithms by using the National Science Foundation network topology and topologies generated using Waxman and Barabási-Albert algorithms. We examine the scalability of these deflection routing algorithms by increasing the network size while keeping the network load constant.

Sections of this chapter appeared in conference proceedings and a journal publication: [2730].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abd El-Rahman, A.I., Rabia, S.I., Shalaby, H.M.H.: MAC-layer performance enhancement using control packet buffering in optical burst-switched networks. J. Lightw. Technol. 30(11), 1578–1586 (2012)

    Article  Google Scholar 

  2. Acampora, A.S., Shah S.I.A.: Multihop lightwave networks: a comparison of store-and-forward and hot-potato routing. In: Proceedings of the IEEE INFOCOM, Bal Harbour, FL, USA, 1, pp. 10–19 (1991)

    Google Scholar 

  3. Addie, R.G., Neame, T.D., Zukerman, M.: Performance evaluation of a queue fed by a Poisson Pareto burst process. Comput. Netw. 40(3), 377–397 (2002)

    Article  Google Scholar 

  4. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47–97 (2002)

    Article  MATH  Google Scholar 

  5. Autonomous System Numbers (2014, Dec.) [Online]. Available: http://www.iana.org/assignments/as-numbers/

  6. Baldine, I., Rouskas, G.N., Perros, H.G., Stevenson, D.: JumpStart: a just-in-time signaling architecture for WDM burst-switched networks. IEEE Commun. Mag. 40(2), 82–89 (2002)

    Article  Google Scholar 

  7. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  8. Baran, P.: On distributed communications networks. IEEE Trans. Commun. Syst. CS-12(1), 1–9 (1964)

    Google Scholar 

  9. Bathula, B.G., Vokkarane, V.M.: QoS-based manycasting over optical burst-switched (OBS) networks. IEEE/ACM Trans. Netw. 18(1), 271–283 (2010)

    Article  Google Scholar 

  10. Belbekkouche, A., Hafid, A., Tagmouti, M., Gendreau, M.: Topology-aware wavelength partitioning for DWDM OBS networks: a novel approach for absolute QoS provisioning. Comput. Netw. 54(18), 3264–3279 (2010)

    Article  MATH  Google Scholar 

  11. Belbekkouche, A., Hafid, A., Gendreau, M.: Novel reinforcement learning-based approaches to reduce loss probability in buffer-less OBS networks. Comput. Netw. 53(12), 2091–2105 (2009)

    Article  MATH  Google Scholar 

  12. Borgonovo, F.: Deflection routing. Routing in Communications Networks. Prentice-Hall, New Jersey, pp. 263–306 (1995)

    Google Scholar 

  13. Borgonovo, F., Fratta, L., Bannister, J.: Unslotted deflection routing in all-optical networks. In: Proceedings of the IEEE GLOBECOM, Houston, TX (1993)

    Google Scholar 

  14. Boyan, J.A., Littman, M.L.: Packet routing in dynamically changing networks: a reinforcement learning approach. In: Jack, J., Cowan, D., Tesauro, G., Alspector, J., (eds.) Advances in Neural Information Processing Systems, vol. 6, pp. 71–678. Morgan Kaufmann Publishers, San Francisco (1994)

    Google Scholar 

  15. Bregni, S., Caruso, A., Pattavina, A.: Buffering-deflection tradeoffs in optical burst switching. Photon. Netw. Commun. 20(2), 193–200 (2010)

    Article  Google Scholar 

  16. BRITE (2014, Dec.) [Online]. Available: http://www.cs.bu.edu/brite

  17. Calvert, K.L., Dora, M.B., Zegura, E.W.: Modeling Internet topology. IEEE Commun. Mag. 35(6), 160–163 (1997)

    Google Scholar 

  18. Chen, Q., Chang, H., Govindan, R., Jamin, S., Shenker, S., Willinger, W.: The origin of power laws in Internet topologies revisited. In: Proceedings of the INFOCOM, New York, USA, pp. 608–617 (2002)

    Google Scholar 

  19. Chen, Y., Qiao, C., Yu, X.: Optical burst switching: a new area in optical networking research. IEEE Netw. 18(3), 16–23 (2004)

    Article  Google Scholar 

  20. Chich, T., Cohen, J., Fraigniaud, P.: Unslotted deflection routing: a practical and efficient protocol for multihop optical networks. IEEE/ACM Trans. Netw. 9(1), 47–59 (2001)

    Article  Google Scholar 

  21. Choi, S.P.M., Yeung, D.Y.: Predictive Q-routing: a memory-based reinforcement learning approach to adaptive traffic control. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Advances in Neural Information Processing Systems, vol. 8, pp. 945–951. MIT Press, Cambridge (1996)

    Google Scholar 

  22. Erdös, P., Reńyi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17–61 (1960)

    MATH  Google Scholar 

  23. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the Internet topology. SIGCOMM Comput. Commun. Rev. 29(4), 251–262 (1999)

    Article  Google Scholar 

  24. Gao, X., Bassiouni, M.: Improving fairness with novel adaptive routing in optical burst-switched networks. J. Lightw. Technol. 27(20), 4480–4492 (2009)

    Article  Google Scholar 

  25. GNU General Public License (2014, Dec.) [Online]. Available: http://www.gnu.org/copyleft/gpl.html

  26. Greenberg, A., Hajek, B.: Deflection routing in hypercube networks. IEEE Trans. Commun. 40(6), 1070–1081 (1992)

    Article  Google Scholar 

  27. Haeri, S., Trajković, L.: Intelligent deflection routing in buffer-less networks. IEEE Trans. Cybern. 45(2), 316–327 (2015)

    Google Scholar 

  28. Haeri, S., Trajković, L.: Deflection routing in complex networks. In: Proceedings of the IEEE International Symposium Circuits and Systems, Melbourne, Australia, pp. 2217–2220 (2014)

    Google Scholar 

  29. Haeri, S., Arianezhad, M., Trajković, L.: A predictive Q-learning-based algorithm for deflection routing in buffer-less networks. In: Proceedings of the IEEE International Conference Systems, Man, and Cybernetics, Manchester, UK, pp. 764–769 (2013)

    Google Scholar 

  30. Haeri, S., Thong, W.W.K., Chen, G., Trajković, L.: A reinforcement learning-based algorithm for deflection routing in optical burst-switched networks. In: Proceedings of the IEEE International Conference Information Reuse and Integration, San Francisco, USA, pp. 474–481 (2013)

    Google Scholar 

  31. Iyer, S., Bhattacharyya, S., Taft, N., Diot, C.: An approach to alleviate link overload as observed on an IP backbone. In: Proceedings of the IEEE INFOCOM, Stanford, CA, USA, vol. 1, pp. 406–416 (2003)

    Google Scholar 

  32. Izal, M., Aracil, J.: On the influence of self-similarity on optical burst switching traffic. In: Proceedings of the IEEE GLOBECOM, Taipei, Taiwan, vol. 3, pp. 2308–2312 (2002)

    Google Scholar 

  33. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey. J. Artif. Intell. Res. 4, 237–285 (1996)

    Google Scholar 

  34. Kiran, Y., Venkatesh, T., Murthy, C.: A reinforcement learning framework for path selection and wavelength selection in optical burst switched networks. IEEE J. Sel. Areas Commun. 25(9), 18–26 (2007)

    Article  Google Scholar 

  35. Krakiwsky, E.J., Wells, D.E.: Coordinate systems in geodesy. In: Fredericton, NB: Lecture Notes LN# 16, Department of Geodesy and Geomatics Engineering, University of New Brunswick (1971)

    Google Scholar 

  36. Leland, W.E., Taqqu, M.S., Willinger, W., Wilson, D.V.: On the self-similar nature of Ethernet traffic (extended version). IEEE/ACM Trans. Netw. 2(1), 1–15 (1994)

    Article  Google Scholar 

  37. Levesque, M., Elbiaze, H., Aly, W.: Adaptive threshold-based decision for efficient hybrid deflection and retransmission scheme in OBS networks. In: Proceedings of the 13th International Conference Optical Network Design and Modeling, Braunschweig, Germany, pp. 55–60 (2009)

    Google Scholar 

  38. Li, S., Wang, M., Wong, E.W.M., Abramov, V., Zukerman, M.: Bounds of the overflow priority classification for blocking probability approximation in OBS networks. J. Opt. Commun. Netw. 5(4), 378–393 (2013)

    Article  Google Scholar 

  39. Liu, H.L., Zhang, B., Shi, S.L.: A novel contention resolution scheme of hybrid shared wavelength conversion for optical packet switching. J. Lightw. Technol. 30(2), 222–228 (2012)

    Article  Google Scholar 

  40. Lü, J., Chen, G., Ogorzalek, M., Trajković, L.: Theories and applications of complex networks: advances and challenges. In: Proceedings of the IEEE International Symposium Circuits and Systems, Beijing, pp. 2291–2294 (2013)

    Google Scholar 

  41. Maxemchuk, N. F.: Comparison of deflection and store and forward techniques in the Manhattan street and shuffle exchange networks. In: Proceedings of the IEEE INFOCOM, Ottawa, ON, Canada, vol. 3, pp. 800–809 (1989)

    Google Scholar 

  42. Merit/NSFNET Information Services: The technology timetable. Link Lett. 7(1), 8–11 (1994)

    Google Scholar 

  43. Mountrouidou, X., Perros, H.: On the departure process of the burst aggregation algorithms in optical burst switching. J. Comput. Netw. 53(3), 247–264 (2009)

    Article  MATH  Google Scholar 

  44. Najiminaini, M., Subedi, L., Trajković, Lj.: Analysis of Internet topologies: a historical view. In: Proceedings of the IEEE International Symposium Circuits and Systems, Taipei, Taiwan, pp. 1697–1700 (2009)

    Google Scholar 

  45. Nowe, A., Steenhaut, K., Fakir, M., Verbeeck, K.: Q-learning for adaptive load based routing. In: Proceedings of the IEEE International Conference System Man, and Cybernetics, San Diego, CA, USA, vol. 4, pp. 3965–3970 (1998)

    Google Scholar 

  46. Paxson, V., Floyd, S.: Wide-area traffic: the failure of Poisson modeling. IEEE/ACM Trans. Netw. 3(3), 226–244 (1995)

    Article  Google Scholar 

  47. Perelló, J., Agraz, F., Spadaro, S., Comellas, J., Junyent, G.: Using updated neighbor state information for efficient contention avoidance in OBS networks. Comput. Commun. 33(1), 65–72 (2010)

    Article  Google Scholar 

  48. Perros, H.G.: Connection-Oriented Networks: SONET/SDH, ATM, MPLS and Optical Networks. Wiley, Chichester (2005)

    Book  Google Scholar 

  49. Peshkin, L., Savova, V.: Reinforcement learning for adaptive routing. In: Proceedings of the International Joint Conference Neural Network, Honolulu, HI, USA, vol. 2. pp. 1825–1830 (2002)

    Google Scholar 

  50. Qiao, C., Yoo, M.: Optical burst switching (OBS)—a new paradigm for an optical Internet. J. High Speed Netw. 8(1), 69–84 (1999)

    Google Scholar 

  51. Siganos, G., Faloutsos, M., Faloutsos, P., Faloutsos, C.: Power-laws and the AS-level Internet topology. IEEE/ACM Trans. Netw. 11(4), 514–524 (2003)

    Google Scholar 

  52. Subedi, L., Trajković, Lj.: Spectral analysis of Internet topology graphs. In: Proceedings of the IEEE International Symposium Circuits and Systems, Paris, France, pp. 1803–1806 (2010)

    Google Scholar 

  53. The Google Earth. (2014, Dec.) [Online]. Available: http://www.google.com/earth/index.html/

  54. A special report: a brief history of NSF and the Internet (2014, Dec.) [Online]. Available: http://www.nsf.gov/news/special_reports/cyber/internet.jsp

  55. The ns-3 network simulator (2014, Dec.) [Online]. Available: http://www.nsnam.org/

  56. Thong, W.W.K., Chen, G.: Jittering performance of random deflection routing in packet networks. Commun. Nonlinear Sci. Numer. Simul. 18(3), 616–624 (2013)

    Article  MATH  Google Scholar 

  57. Thong, W.W.K., Chen, G., Trajković, L.: RED-f routing protocol for complex networks. In: Proceedings of the IEEE International Symposium Circuits and Systems, Seoul, Korea, pp. 1644–1647 (2012)

    Google Scholar 

  58. Trajković, L.: Analysis of Internet topologies. IEEE Circuits Syst. Mag. 10(3), 48–54, Third Quarter (2010)

    Google Scholar 

  59. Wang, W.X., Yin, C.Y., Yan, G., Wang, B.H.: Integrating local static and dynamic information for routing traffic. Phys. Rev. E 74, 016101 (2006)

    Article  MATH  Google Scholar 

  60. Wang, X., Jiang, X., Pattavina, A.: Efficient designs of optical LIFO buffer with switches and fiber delay lines. IEEE Trans. Commun. 59(12), 3430–3439 (2011)

    Article  Google Scholar 

  61. Watkins, C.J.C.H., Dayan, P.: Technical note. Q-learning Mach. Learn. 8(3), 279–292 (1992)

    MATH  Google Scholar 

  62. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393, 440–442 (1998)

    Google Scholar 

  63. Waxman, B.M.: Routing of multipoint connections. IEEE J. Sel. Areas Commun. 6(9), 1617–1622 (1988)

    Article  Google Scholar 

  64. Wong, E.W.M., Baliga, J., Zukerman, M., Zalesky, A., Raskutti, G.: A new method for blocking probability evaluation in OBS/OPS networks with deflection routing. J. Lightw. Technol. 27(23), 5335–5347 (2009)

    Article  Google Scholar 

  65. Wu, G., Dai, W., Li, X., Chen, J.: A maximum-efficiency-first multi-path route selection strategy for optical burst switching networks. Optik-Int. J. Light Electr. Optics 125(10), 2229–2233 (2014)

    Article  Google Scholar 

  66. Xiong, Y., Vandenhoute, M., Cankaya, H.C.: Control architecture in optical burst-switched WDM networks. IEEE J. Sel. Areas Commun. 18(10), 1838–1851 (2000)

    Article  Google Scholar 

  67. Xu, L., Perros, H.G., Rouskas, G.: Techniques for optical packet switching and optical burst switching. IEEE Commun. Mag. 39(1), 136–142 (2001)

    Article  Google Scholar 

  68. Yang, X., Wetherall, D.: Source selectable path diversity via routing deflections. In: Proceedings of the ACM SIGCOMM, New York, USA, pp. 159–170 (2006)

    Google Scholar 

  69. Yoo, M., Qiao, C., Dixit, S.: Comparative study of contention resolution policies in optical burst-switched WDM networks. In: Proceedings of the SPIE, Boston, MA, vol. 4213, pp. 124–135 (2000)

    Google Scholar 

  70. Yu, X., Li, J., Cao, X., Chen, Y., Qiao, C.: Traffic statistics and performance evaluation in optical burst switched networks. J. Lightw. Technol. 22(12), 2722–2738 (2004)

    Article  Google Scholar 

  71. Zalesky, A., Vu, H., Rosberg, Z., Wong, E.W.M., Zukerman, M.: Stabilizing deflection routing in optical burst switched networks. IEEE J. Sel. Areas Commun. 25(6), 3–19 (2007)

    Article  Google Scholar 

  72. Zalesky, A., Vu, H., Rosberg, Z., Wong, E., Zukerman, M.: OBS contention resolution performance. Perform. Eval. 64(4), 357–373 (2007)

    Article  Google Scholar 

  73. Zalesky, A., Vu, H., Rosberg, Z., Wong, E.W.M., Zukerman, M.: Modelling and performance evaluation of optical burst switched networks with deflection routing and wavelength reservation. In: Proceedings of the INFOCOM, Hong Kong SAR, China, vol. 3, pp. 1864–1871 (2004)

    Google Scholar 

  74. Zegura, E.W., Calvert, K.L., Donahoo, M.J.: A quantitative comparison of graph-based models for Internet topology. IEEE/ACM Trans. Netw. 5(6), 770–783 (1997)

    Article  Google Scholar 

  75. Zukerman, M., Neame, T.D., Addie, R.G.: Internet traffic modeling and future technology implications. In: Proceedings of the IEEE INFOCOM, San Francisco, CA, pp. 587–596 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ljiljana Trajkovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Haeri, S., Trajkovic, L. (2016). Deflection Routing in Complex Networks. In: Lü, J., Yu, X., Chen, G., Yu, W. (eds) Complex Systems and Networks. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47824-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47824-0_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47823-3

  • Online ISBN: 978-3-662-47824-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics