Skip to main content

Detection

  • Chapter
  • First Online:
  • 5520 Accesses

Abstract

The term detection refers to the recognition of known or unknown objects in an image and to the determination of their position and orientation. On the one hand, the objects that are to be detected can be test objects, whose presence, orientation or integrity has to be inspected. On the other hand, it might be necessary to detect defects or certain structures such as, e.g., features, in the image.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Dana Ballard. Generalizing the Hough Transform to Detect Arbitrary Shapes. Pattern Recognition, 13(2):111–122, 1981.

    Article  Google Scholar 

  2. Jürgen Beyerer. Analyse von Riefentexturen. PhD thesis, Universität Karlsruhe (TH), 1994.

    Google Scholar 

  3. Jürgen Beyerer and Fernando Puente León. Die Radontransformation in der digitalen Bildverarbeitung. Automatisierungstechnik, 50(10):472–480, 2002.

    Google Scholar 

  4. Jürgen Brauer. Human Pose Estimation with Implicit Shape Models. PhD thesis, Karlsruhe Institute of Technology, 2014.

    Google Scholar 

  5. Ward Cheney. Analysis for applied mathematics. Springer, 2001.

    Google Scholar 

  6. Richard Duda and Peter Hart. Use of the Hough transformation to detect lines and curves in pictures. Communications of the ACM, 15(1):11–15, 1972.

    Article  MATH  Google Scholar 

  7. Rafael Gonzalez and RichardWoods. Digital image processing. Pearson Prentice Hall, 3rd edition, 2008.

    Google Scholar 

  8. Martin Grafmüller, Jürgen Beyerer, and Kristian Kroschel. Decision Tree Classifier for Character Recognition Combining Support Vector Machines and Artificial Neural Networks. In Mathematics of Data/Image Coding, Compression, and Encryption with Applications, Proc. SPIE, volume 7799, San Diego, USA, August 2010.

    Google Scholar 

  9. Graham Hall, Trevor Terrel, John Senior, and Lesley Murphy. New fast discrete Radon transform for enhancing linear features in noisy images. Electronics Letters, 24(14):876–877, 1988.

    Article  Google Scholar 

  10. Robert Haralick and Linda Shapiro. Computer and robot vision. Addison-Wesley, 1992.

    Google Scholar 

  11. Chris Harris and Mike Stephens. A combined corner and edge detector. In Proceedings of the 4 th Alvey Vision Conference, pages 147–151, 1988.

    Google Scholar 

  12. Peter Hart. How the Hough Transform Was Invented. IEEE Signal Processing Magazine, pages 18–22, 2009.

    Google Scholar 

  13. Marko Heikkilä, Matti Pietikäinen, and Cordelia Schmid. Description of interest regions with local binary patterns. Pattern Recognition, 42(3):425–436, 2009.

    Article  MATH  Google Scholar 

  14. Harro Heuser. Funktionalanalysis – Theorie und Anwendung. Teubner, 4th edition, 2006.

    Google Scholar 

  15. Joseph Horner and Peter Gianino. Phase-only matched filtering. Applied Optics, 23(6):812–816, March 1984.

    Article  Google Scholar 

  16. Paul Hough. Method and means for recognizing complex patterns. Patent US 3069654, 1962.

    Google Scholar 

  17. Kai Jüngling. Ein generisches System zur automatischen Detektion, Verfolgung und Wiedererkennung von Personen in Videodaten. PhD thesis, Karlsruhe Institute of Technology, 2011.

    Google Scholar 

  18. Avinash Kak and Malcolm Slaney. Principles of computerized tomographic imaging. Society for Industrial and Applied Mathematics, 2001.

    Google Scholar 

  19. Willi Kalender. Computed tomography: fundamentals, system technology, image quality, applications. Publicis, 3rd edition, 2011.

    Google Scholar 

  20. A. Kassim, T. Tan, and K. Tan. A comparative study of efficient generalised Hough transform techniques. Image and Vision Computing, 17(10):737–748, 1999.

    Article  Google Scholar 

  21. Violet Leavers. Shape detection in computer vision using the Hough transform. Springer, 1992.

    Google Scholar 

  22. Alain Lehmann, Bastian Leibe, and Luc Van Gool. Fast PRISM: Branch and Bound Hough Transform for Object Class Detection. International Journal of Computer Vision, 94(2):175–197, 2011.

    Article  Google Scholar 

  23. Bastian Leibe, Aleš Leonardis, and Bernt Schiele. Combined Object Categorization and Segmentation with an Implicit Shape Model. In ECCVWorkshop on Statistical Learning in Computer Vision, pages 17–32, 2004.

    Google Scholar 

  24. Bastian Leibe, Aleš Leonardis, and Bernt Schiele. Robust object detection with interleaved categorization and segmentation. International Journal of Computer Vision, 77:259–289, 2008.

    Article  Google Scholar 

  25. Elliott H. Lieb and Michael Loss. Analysis, volume 14 of Graduate Studies in Mathematics. American Mathematical Society, 1997.

    Google Scholar 

  26. Lesley Murphy. Linear feature detection and enhancement in noisy images via the Radon transform. Pattern Recognition Letters, 4(4):279–284, 1986.

    Article  MathSciNet  Google Scholar 

  27. Ana Pérez Grassi. Variable illumination and invariant features for detecting and classifying varnish defects. PhD thesis, Karlsruhe Institute of Technology, 2010.

    Google Scholar 

  28. Johann Radon. Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften, Mathematisch-Physikalische Klasse, 69:262–277, 1917.

    Google Scholar 

  29. Paul Rattey and Allen Lindgren. Sampling the 2-D Radon transform. IEEE Transactions on Acoustics, Speech and Signal Processing, 29(5):994–1002, October 1981.

    Article  Google Scholar 

  30. Jennifer Sander, Michael Heizmann, Igor Goussev, and Jürgen Beyerer. Global evaluation of focussed Bayesian fusion. In Jerome Braun, editor, Multisensor, Multisource Information Fusion: Architectures, Algorithms, and Applications, Proc. SPIE, volume 7710, 2010.

    Google Scholar 

  31. Günter Saur, Stéphane Estable, Karin Zielinski, Stefan Knabe, Michael Teutsch, and Matthias Gabel. Detection and classification of man-made offshore objects in TerraSAR-X and RapidEye imagery: Selected results of the DeMarine-DEKO project. In IEEE OCEANS, 2011.

    Google Scholar 

  32. Hanns Schulz-Mirbach. Anwendung von Invarianzprinzipien zur Merkmalgewinnung in der Mustererkennung. VDI-Verlag, 1995.

    Google Scholar 

  33. Wesley Snyder and Hairong Qi. Machine vision. Cambridge University Press, 2004.

    Google Scholar 

  34. Josef Stoer and Roland Bulirsch. Introduction to numerical analysis. Springer, 3rd edition, 2002.

    Google Scholar 

  35. Ansgar Trächtler. Tomographische Methoden in der Meßtechnik, volume 897 of Fortschritt-Berichte VDI, 8. VDI-Verlag, 2001.

    Google Scholar 

  36. A. vander Lugt. Signal detection by complex spatial filtering. IEEE Transactions on Information Theory, 10(2):139–145, 1964.

    Article  Google Scholar 

  37. Vijaya Kumar, Fred Dickey, and John DeLaurentis. Correlation filters minimizing peak location errors. Journal of the Optical Society of America A, 9(5):678–682, 1992.

    Article  Google Scholar 

  38. Vijaya Kumar and L. Hassebrook. Performance measures for correlation filters. Applied Optics, 29(20):2997–3006, 1990.

    Article  Google Scholar 

  39. WolfgangWalter. Analysis 2. Springer, 4th edition, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Beyerer .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beyerer, J., Puente León, F., Frese, C. (2016). Detection. In: Machine Vision. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47794-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47794-6_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47793-9

  • Online ISBN: 978-3-662-47794-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics