• Jürgen BeyererEmail author
  • Fernando Puente León
  • Christian Frese


Machine vision and automated visual inspection are rapidly finding their way into industrial measurement and quality control in the technical and engineering sectors. This development especially benefits from increasingly powerful computers and reasonably priced camera components.

This book provides insight into the fascinating and very up-to-date topic of automated visual inspection and image processing. An extensive content is presented in an easily comprehensible way and is explained using various examples. No particular previous knowledge is required.


Test Object Machine Vision Human Visual System Active Vision Brake Disk 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Edward Adelson. Lightness Perception and Lightness Illusions. In Michael S. Gazzaniga, editor, The New Cognitive Neurosciences, pages 339–351. MIT Press, Cambridge, MA, 2nd edition, 2000.Google Scholar
  2. [2]
    Edward H. Adelson. Lightness Perception and Lightness Illusions.,, 2011.
  3. [3]
    Ivan Artamonov. Optische Täuschungen. Deutsch, 5th edition, 2006.Google Scholar
  4. [4]
    Jonathan Balzer and Stefan Werling. Principles of Shape from Specular Reflection. Measurement, 43(10):1305–1317, 2010.CrossRefGoogle Scholar
  5. [5]
    Bruce Batchelor and Paul Whelan. Intelligent vision systems for industry. Springer, 1997.Google Scholar
  6. [6]
    Norbert Bauer, editor. Guideline for industrial image processing. Fraunhofer-Allianz Vision, 2003.Google Scholar
  7. [7]
    Phil Brodatz. Textures: A photographic album for artists and designers. Dover, 1966.Google Scholar
  8. [8]
    Marco Huber. Probabilistic Active Vision: An Overview. Technical Report IES-2010-01. In Jürgen Beyerer and Marco Huber, editors, Proceedings of the 2010 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory, volume 7 of Karlsruher Schriften zur Anthropomatik, pages 1–16. KIT Scientific Publishing, 2011.Google Scholar
  9. [9]
    Marco Huber, Tobias Dencker, Masoud Roschani, and Jürgen Beyerer. Bayesian Active Object Recognition via Gaussian Process Regression. In Proceedings of the 15th International Conference on Information Fusion, 2012.Google Scholar
  10. [10]
    Axel Korn. Bildverarbeitung durch das visuelle System. Springer, 1982.Google Scholar
  11. [11]
    Axel Korn. Verarbeitung und Auswertung von Signalen bildgebender Sensoren. VDI-Verlag, 1995.Google Scholar
  12. [12]
    Lucas Paletta and Axel Pinz. Active object recognition by view integration and reinforcement learning. Robotics and Autonomous Systems, 31:71–86, 2000.CrossRefGoogle Scholar
  13. [13]
    Fernando Puente León and Jürgen Beyerer. Active vision and sensor fusion for inspection of metallic surfaces. In David P. Casasent, editor, Intelligent Robots and Computer Vision XVI: Algorithms, Techniques, Active Vision, and Materials Handling, volume 3208 of Proc. SPIE, pages 394–405, 1997.Google Scholar
  14. [14]
    Brian Roberts, Mike Harris, and Tim Yates. The roles of inducer size and distance in the Ebbinghaus illusion (Titchener circles). Perception, 34(7):847–856, 2005.CrossRefGoogle Scholar
  15. [15]
    Michael Sabourin and Amar Mitiche. Optical character recognition by a neural network. Neural Networks, 5(5):843–852, 1992.CrossRefGoogle Scholar
  16. [16]
    Konstantinos Tarabanis, Peter Allen, and Roger Tsai. A survey of sensor planning in computer vision. IEEE Transactions on Robotics and Automation, 11(1):86–104, February 1995.CrossRefGoogle Scholar
  17. [17]
    Verein Deutscher Ingenieure and Verband der Elektrotechnik, Elektronik und Informationstechnik. Industrielle Bildverarbeitung – Grundlagen und Begriffe. Beuth Verlag, Berlin, 2010.Google Scholar
  18. [18]
    Verein Deutscher Ingenieure and Verband der Elektrotechnik, Elektronik und Informationstechnik. Industrielle Bildverarbeitung – Leitfaden für die Erstellung eines Lastenhefts für Bildverarbeitungssysteme. Beuth Verlag, Berlin, 2011.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jürgen Beyerer
    • 1
    Email author
  • Fernando Puente León
    • 2
  • Christian Frese
    • 3
  1. 1.Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung and The Karlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.Karlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.Fraunhofer-Institut für Optronik, Systemtechnik und BildauswertungKarlsruheGermany

Personalised recommendations