Advertisement

NoSQL, NewSQL, Map-Reduce und Hadoop

  • Jens Lechtenbörger
  • Gottfried Vossen
Chapter

Zusammenfassung

Traditionelle relationale Datenbanken haben in der jüngeren Vergangenheit Konkurrenz in Form von NoSQL- und NewSQL-Datenbanken sowie von parallelen Datenhaltungs- und -analysesystemen wie Hadoop erhalten. Die zugrundeliegenden Entwicklungen werden motiviert, technische Grundlagen erläutert sowie Besonderheiten der Ansätze vorgestellt.

Literatur

  1. Afrati, F., Das Sarma, A., Salihoglu, S., Ullman, J.D.: Vision paper: towards an understanding of the limits of map-reduce computation. CoRR abs/1204.1754 (2012)Google Scholar
  2. Afrati, F., Das Sarma, A., Salihoglu, S., Ullman, J.D.: Upper and lower bounds on the cost of a map-reduce computation. PVLDB 6(4), 277–288 (2013)Google Scholar
  3. Alexandrov, A., et al.: The Stratosphere platform for big data analytics. In: The VLDB Journal, Springer-Verlag, Berlin Heidelberg 2014, http://stratosphere.eu/assets/papers/2014-VLDBJ_Stratosphere_Overview.pdf, Zugegriffen: 1. Aug. 2015
  4. Alsubaiee, S., et al.: Storage management in AsterixDB. PVLDB 7(10), 841–852 (2014)Google Scholar
  5. Bailis, P., Venkataraman, S., Franklin, M.J., Hellerstein, J.M., Stoica, I.: Quantifying eventual consistency with PBS. VLDB J. 23(2), 279–302 (2014)CrossRefGoogle Scholar
  6. Bailis, P., Fekete, A., Franklin, M.J., Ghodsi, A., Hellerstein, J.M., Stoica, I.: Coordination avoidance in database systems, to appear in Proc. VLDB (pre-print at arXiv:1402.2237) (2015)Google Scholar
  7. Battré, D., et al.: Nephele/PACTs: a programming model and execution framework for web-scale analytical processing. In: Proceedings of ACM Symposium on Cloud Computing (SoCC), S. 119–130. (2010)Google Scholar
  8. Brewer, E.A.: CAP twelve years later: how the “rules” have changed. IEEE Comput. 45(2), 23–29 (2012)CrossRefGoogle Scholar
  9. Cavage, M., Pacheco, D.: Bringing arbitrary compute to authoritative data. Commun. ACM 57(8),40–48 (2014)CrossRefGoogle Scholar
  10. Chang, F., et al.: Bigtable: a distributed storage system for structured data. ACM Trans. Comput. Syst. 26(2), 1–26 (2008)CrossRefGoogle Scholar
  11. Corbett, J.C., et al.: Spanner: Google’s globally distributed database. ACM Trans. Comput. Syst. 31(3), 8:1–8:22 (2013)CrossRefGoogle Scholar
  12. Dean, J., Ghemawat, S.: Map-reduce: simplified data processing on large clusters. In: Proceedings of the 6th symposium on Operating System Design and Implementation (OSDI), 2004, and Comm. ACM. 51(1), 107–113 (2008)Google Scholar
  13. DeCandia, G., et al.: Dynamo: Amazon’s highly available key-value store. In: Proceedings of the 21st ACM symposium on operating systems principles, S. 205–220. (2007)Google Scholar
  14. Eich, M.H.: Main memory database research directions. In: Proceedings of the international workshop on Database Machines, S. 251–268. (1989)Google Scholar
  15. Fedak, G.: Special issue of map-reduce and its applications. Concurr. Comput. Pract. Exper. 25(1), 1 (2013)CrossRefGoogle Scholar
  16. Fox, A., Brewer, E.A.: Harvets, yield, and scalable tolerant systems. In: Proceedings of the 7th hot topics in Operating Systems, S. 174–178. (1999)Google Scholar
  17. Fox, A., Gribble, St.D., Chawathe, Y., Brewer, E.A., Gauthier, P.: Cluster-based scalable network services. In: Proceedings of the 16th ACM symposium on Operating Systems Principles, S. 78–91. (1997)Google Scholar
  18. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–169 (1998)CrossRefGoogle Scholar
  19. Loos, P., et al.: In-memory databases in business information systems. Bus. Inf. Syst. Eng. 6, 389–395 (2011)CrossRefGoogle Scholar
  20. Lynch, N., Gilbert, S.: Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web services. ACM SIGACT News 33(2), 51–59 (2002)CrossRefGoogle Scholar
  21. Plattner, H., Zeier, A.: In-memory data management – an inflection point for enterprise applications. Springer, Berlin (2011)Google Scholar
  22. Rajaraman, A., Lescovec, J., Ullman, J.D.: Mining of massive datasets, 2. Aufl. verfügbar unter http://infolab.stanford.edu/~ullman/mmds.html (2013)
  23. Redmond, E., Wilson, J.R.: Seven databases in seven weeks: a guide to modern databases and the NoSQL movement. Pragmatic Programmers (2012)Google Scholar
  24. Saecker, S., Markl, V.: Big data analytics on modern hardware architectures: a technology survey. European Business Intelligence Summer School (eBISS), Springer LNBPI, Lecture Notes in Business Information Processing, 138, S. 125–149. (2012)Google Scholar
  25. Sauer, C., Härder, T.: Compilation of query languages into map-reduce. Datenbank-Spektrum 13(1), 5–15 (2013)CrossRefGoogle Scholar
  26. Schönthaler, F., Vossen, G., Oberweis, A., Karle T.: Business Processes for Business Communities. Springer-Verlag, Berlin (2012)CrossRefGoogle Scholar
  27. Shim, K.: Map-reduce algorithms for big data analysis. Springer LNCS. 7813, 44–48 (2013)Google Scholar
  28. Shute, J., et al.: F1: A distributed SQL database that scales. Proc. VLDB Endow. 6(11), 1068–1079 (2013)CrossRefGoogle Scholar
  29. Vogels, W.: Eventually consistent. Commun. ACM. 52(1), 40–44 (2009)CrossRefGoogle Scholar
  30. Weikum, G., Vossen, G.: Transactional Information Systems – Theory, Algorithms, and the Practice of Concurrency Control and Recovery. Morgan Kaufmann, San Francisco (2002)Google Scholar
  31. White, T.: Hadoop: The Definitive Guide, 3. Aufl. O’Reilly Media, Sebastopol (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institut für WirtschaftsinformatikWestfälische Wilhelms-UniversitätMünsterDeutschland

Personalised recommendations