Advertisement

Neuere Ansätze

  • Gert Strauß
Chapter
  • 4k Downloads

Zusammenfassung

Durch den rasanten Fortschritt in der Computertechnologie – der sich sowohl in der Hardware als auch in der Softwareentwicklung in immer schnelleren Rechnern mit größeren Speicherkapazitäten, besserer visueller Darstellung des Feedbacks und komplexen Softwaremodulen widerspiegelt – ist es seit wenigen Jahren möglich geworden, auch neue, aufwändige Bio- und Neurofeedbackanwendungen in den therapeutischen Praxen einzusetzen.

Einigen der im Folgenden beschriebenen Neurofeedbacktechniken, wie
  • das Z-Wert-Training,

  • das LORETA- (Low Resolution Brain Electromagnetic Tomography-)Neurofeedback oder

  • das Phänotyp-geleitete EEG-Training,

geht zwar meistens eine aufwändige quantitative und/oder qualitative EEG-Analyse voraus, sie bieten dafür aber erfahrenen Neurofeedbackanwendern die Möglichkeit, EEG-Auffälligkeiten in bestimmten Hirnregionen zielgenauer zu lokalisieren und die Trainingsprotokolle entsprechend anzupassen.

Da diese Verfahren erst in den letzten Jahren entwickelt wurden, ist die Studienlage, meistens Einzelfallbeobachtungen, noch nicht ausreichend, um zum jetzigen Zeitpunkt die Effektivität dieser Ansätze zu beurteilen.

Sherlin et al. (2010) von der amerikanische Gesellschaft für Neurofeedback und Forschung (ISNR) postulieren in ihrem „Positionspapier zur Neurofeedbackbehandlung von ADHS“, dass zukünftige Forschung daran ausgerichtet werden soll, Verbesserungen der Symptomatik durch eine geringere Anzahl an Trainingssitzungen als bisher zu erzielen. In diesem Zusammenhang werden das Z-Wert-Training und das LORETA-Neurofeedback als Trainingsoptionen genannt.

Weiterführende Literatur

Allgemein

  1. Sherlin L, Arns M, Lubar J, Sokhadze E (2010) A position paper on Neurofeedback for the treatment of ADHD. Journal of Neurotherapy 14(2):66–78CrossRefGoogle Scholar

Z-Wert-Training

  1. Collura TF, Guan J, Tarrant J, Bailey J, Starr F (2010) EEG biofeedback case studies using live Z-score training and a normative database. Journal of Neurotherapy 14(1):22–46CrossRefGoogle Scholar
  2. Collura TF (2009) Neuronal dynamics in relation to normative electroencephalography assessment and training. Biofeedback 36:134–139Google Scholar
  3. Collura TF (2008b) Whole-head normalization using live Z-scores for connectivity training (Part 2). NeuroConnections Newsletter 9–12Google Scholar
  4. Collura TF (2008) Whole-head normalization using live Z-scores for connectivity training, Part 1. NeuroConnections Newsletter 18–19 (pp 12, 15)Google Scholar
  5. Smith M (2008) A father finds a solution: Z-score training. NeuroConnections Newsletter 24–25 (pp 22)Google Scholar
  6. Thatcher RW (2008) Z-score EEG biofeedback: Conceptual foundations. NeuroConnections Newsletter 20 (pp 9, 11)Google Scholar

LORETA-Neurofeedback

  1. Cannon R, Congredo M, Lubar J, Hutchens T (2009) Differentiating a network of executive attention: LORETA neurofeedback in anterior cingulate and dorsolateral prefrontal cortices. Int J Neurosci 119(3):404–441CrossRefPubMedGoogle Scholar
  2. Cannon R, Lubar J, Sokhadze E, Baldwin D (2008) LORETA neurofeedback for addiction and the possible neurophysiology of psychological processes influenced: A case study and region of interest analysis of LORETA neurofeedback in right anterior cingulate cortex. Journal of Neurotherapy 12(4):227–241CrossRefGoogle Scholar
  3. Cannon R, Lubar J (2007) EEG spectral power and coherence: Differentiating effects of spatial-specific neuro-operant learning (SSNOL) utilizing LORETA neurofeedback training in the anterior cingulate and bilateral dorsolateral prefrontal cortices. Journal of Neurotherapy 11(3):25–44CrossRefGoogle Scholar
  4. Cannon R, Lubar J, Congedo M, Thornton K, Towler K, Hutchens T (2007) The effects of neurofeedback training in the cognitive division of the anterior cingulate gyrus. International Journal of Neuroscience 117(3):337–357CrossRefPubMedGoogle Scholar
  5. Cannon R, Lubar J, Congedo M, Thornton K, Towler K, Hutchens T (2007) The effects of neurofeedback training in the cognitive division of the anterior cingulate gyrus. International Journal of Neuroscience 117(3):337–357CrossRefPubMedGoogle Scholar
  6. Cannon R, Lubar J, Gerke A, Thornton K, Hutchens T, McCammon V (2006) EEG spectral-power and coherence: LORETA neurofeedback training in the anterior cingulate gyrus. Journal of Neurotherapy 10(1):5–31CrossRefGoogle Scholar
  7. Cannon R, Lubar J, Congedo M, Gerke A, Thornton K, Kelsay B et al (2006b) The effects of neurofeedback training in the cognitive division of the anterior cingulate gyrus. International Journal of ScienceGoogle Scholar
  8. Cannon R, Lubar J, Thornton K, Wilson S, Congedo M (2005) Limbic beta activation and LORETA: Can hippocampal and related limbic activity be recorded and changes visualized using LORETA in an affective memory condition? Journal of Neurotherapy 8(4):5–24CrossRefGoogle Scholar
  9. Congedo M, Lubar JF, Joffe D (2004) Low-resolution electromagnetic tomography neurofeedback. IEEE Transactions on Neural Systems & Rehabilitation Engineering 12(4):387–397CrossRefGoogle Scholar
  10. Lubar J, Congedo M, Askew JH (2003) Low-resolution electromagnetic tomography (LORETA) of cerebral activity in chronic depressive disorder. International Journal of Psychophysiology 49(3):175–185CrossRefPubMedGoogle Scholar
  11. Thatcher RW (2008) Z-score EEG biofeedback: Conceptual foundations. NeuroConnections Newsletter 20 (pp 9, 11)Google Scholar

Phänotyp-geleitetes Neurofeedbacktraining

  1. American Psychiatric Association (APA) (2000) DSM-IV-TR: Diagnostic and Statistical Manual of Mental Disorders, 4. Aufl.Google Scholar
  2. Johnstone J, Gunkelman J, Lunt J (2005) Clinical database development: Characterization of EEG phenotypes. Clinical EEG and Neuroscience 36(2):99–107CrossRefPubMedGoogle Scholar
  3. Gunkelman J (2006) Transcend the DSM using phenotypes. Biofeedback 34(3):95–98Google Scholar

fMRT-Neurofeedback

  1. Bray S, Shimojo S, O’Doherty JP (2007) Direct instrumental conditioning of neural activity using functional magnetic resonance imaging-derived reward feedback. Journal of Neuroscience 27:7498–7507CrossRefPubMedGoogle Scholar
  2. Caria A, Sitaram R, Veit R, Begliomini C, Birbaumer N (2010) Volitional control of anterior insula activity modulates the response to aversive stimuli. A real-time functional magnetic resonance imaging study. Biological Psychiatry 68(5):425–432CrossRefPubMedGoogle Scholar
  3. Caria A, Veit R, Sitaram R, Lotze M, Weiskopf N, Grodd W, Birbaumer N (2007) Regulation of anterior insular cortex activity using real-time fMRI. Neuroimage 35:1238–1246CrossRefPubMedGoogle Scholar
  4. DeCharms RC (2008) Applications of real-time fMRI. Nature Neuroscience 9:720–729CrossRefGoogle Scholar
  5. DeCharms RC (2007) Reading and controlling human brain activation using real-time functional magnetic resonance imaging. Trends in Cognitive Science 11:473–481CrossRefGoogle Scholar
  6. DeCharms RC, Maeda F, Glover GH, Ludlow D, Pauly JM, Soneji D, Gabrieli JD, Mackey SC (2005) Control over brain activation and pain learned by using realtime functional MRI. Proceedings of the National Academy of Sciences 102:18626–18631CrossRefGoogle Scholar
  7. DeCharms RC, Christoff K, Glover G, Pauly J, Whitfield S, Gabrieli J (2004) Learned regulation of spatially localized brain activation using real-time fMRI. Neuroimage 21:436–443CrossRefPubMedGoogle Scholar
  8. Fetz EE (2007) Volitional control of neural activity: implications for brain-computer interfaces. Journal of Physiology 579:571–579PubMedCentralCrossRefPubMedGoogle Scholar
  9. Johnston SJ, Boehm SG, Healy D, Goebel R, Linden DEJ (2010) Neurofeedback: A promising tool for the self-regulation of emotion networks. Neuroimage 49(1):1066–1072CrossRefPubMedGoogle Scholar
  10. Rota G, Sitaram R, Veit R, Erb M, Weiskopf N, Dogil G, Birbaumer N (2009) Self-regulation of regional cortical activity using real-time fMRI: The right inferior frontal gyrus and linguistic processing. Human Brain Mapping 30:1605–1614CrossRefPubMedGoogle Scholar
  11. Weiskopf N, Sitaram R, Josephs O, Veit R, Scharnowski F, Goebel R, Birbaumer N, Deichmann R, Mathiak K (2007) Real-time functional magnetic resonance imaging: methods and applications. Magnetic Resonance Imaging 25:989–1003CrossRefPubMedGoogle Scholar
  12. Weiskopf N, Scharnowski F, Veit R, Goebel R, Birbaumer N, Mathiak K (2004) Self-regulation of local brain activity using real-time functional magnetic resonance imaging (fMRI). Journal of Physiology (Paris) 98:357–373CrossRefGoogle Scholar
  13. Weiskopf N, Veit R, Erb M, Mathiak K, Grodd W, Goebel R, Birbaumer N (2003) Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): methodology and exemplary data. Neuroimage 19:577–586CrossRefPubMedGoogle Scholar
  14. Yoo S, O’Leary H, Fairneny T, Chen N, Panych L, Park H, Jolesz F (2006) Increasing cortical activity in auditory areas through neurofeedback functional magnetic resonance imaging. Neuroreport 17:1273–1278CrossRefPubMedGoogle Scholar
  15. Yoo S, Jolesz FA (2002) Functional MRI for neurofeedback: feasibility study on a hand motor task. Neuroreport 13:1377–1381CrossRefPubMedGoogle Scholar

HEG-Biofeedback

  1. Carmen JA (2004) Passive infrared hemoencephalography: Four years and 100 migraines. Journal of Neurotherapy 8(3):23–51CrossRefGoogle Scholar
  2. Coben R, Pudolsky I (2007) Infrared imaging and neurofeedback: Initial reliability and validity. Journal of Neurotherapy 11(3):3–13CrossRefGoogle Scholar
  3. Friedes D, Aberbach L (2003) Exploring hemispheric differences in infrared brain emissions. Journal of Neurotherapy 8(3):53–61CrossRefGoogle Scholar
  4. Mize W (2004) Hemoencephalography A new therapy for attention deficit hyperactivity disorder (ADHD): Case report. Journal of Neurotherapy 8(3):77–97CrossRefGoogle Scholar
  5. Sherrill R (2004) Effects of hemoencephalography (HEG) training at three prefrontal locations using EEG ratios at Cz. Journal of Neurotherapy 8(3):63–76CrossRefGoogle Scholar
  6. Toomim H, Mize W, Kwong PC, Toomim M, Marsh R, Kozlowski GP, Kimball M, Remond A (2004) Intentional increase of cerebral blood oxygenation using hemoencephalography (HEG). Journal of Neurotherapy 8(3):5–21CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Gert Strauß
    • 1
  1. 1.Praxis für Ergotherapie, Biofeedback and NeurofeedbackHeidelbergDeutschland

Personalised recommendations