Advertisement

Training der Selbstkontrolle der langsamen kortikalen Potenziale

  • Edith Schneider
  • Gert Strauß
Chapter
  • 4.1k Downloads

Zusammenfassung

In Kapitel 4 erfahren Sie was langsame kortikale Potenziale sind, welche Ziele das Training der Selbstkontrolle der langsamen kortikalen Potenziale erreichen will und erhalten eine Schritt für Schritt Erklärung des Trainings. Sie lernen wie Artefakte verhindert werden, wie man die Trainierenden beobachtet und motiviert und wie der Transfer in den Alltag erleichtert wird. Der Einsatz von Eingangs-undAusgangstests und von Fragebögen wird beschrieben.

Abgerundet wird das Kapitel durch die Beschreibung der neuesten Studien und durch Fallbeschreibungen.

Weiterführende Literatur

  1. Arns M et al (2009) Efficacy of neurofeedback treatment in ADHD: the effects on inattention, impulsivity and hyperactivity: a metaanalysis. Clinical EEG and Neuroscience 40:180–189CrossRefPubMedGoogle Scholar
  2. Andrews-Hanna JR et al (2007) Disruption of large-scale brain systems in advanced aging. Neuron 56:924–935PubMedCentralCrossRefPubMedGoogle Scholar
  3. Assaf M et al (2010) Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients. Neuroimage 53:247–256PubMedCentralCrossRefPubMedGoogle Scholar
  4. Birbaumer N et al (1990) Slow potentials of the cerebral cortex and behavior. Physiological Reviews 70:1–41PubMedGoogle Scholar
  5. Birbaumer N, Schmidt RF (2006) Biologische Psychologie, 6. Aufl. Springer, Berlin Heidelberg New YorkGoogle Scholar
  6. Broyd SJ et al (2009) Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci Biobehav Rev 33:279–296CrossRefPubMedGoogle Scholar
  7. Castellanos FX et al (2005) Varieties of attention-deficit/hyperactivity disorder-related intraindividual variability. Biol Psychiatry 57:1416–1423PubMedCentralCrossRefPubMedGoogle Scholar
  8. Castellanos FX et al (2008) Cingulate-precuneus interactions: a new locus of dysfunction in adult attention-deficit/hyperactivity disorder. Biol Psychiatry 63:332–337PubMedCentralCrossRefPubMedGoogle Scholar
  9. Cole M et al (2010) Identifying the brain‘s most globally connected regions. NeuroImage 49:3132–3148CrossRefPubMedGoogle Scholar
  10. Döpfner M et al (2008) DISYPS-11. Diagnostisches System für psychische Störungen nach ICD-10 und DSM-IV für Kinder und Jugendliche – II. Hogrefe, GöttingenGoogle Scholar
  11. Elbert T (1990) Slow Cortical Potentials Reflect the Regulation of Cortical Excitability. In: McCallum WC (Hrsg) Slow potential changes in the human brain. Proceedings of a NATO Advanced Research Workshop on Slow Potential Changes in the Human Brain Il Ciocco, Italy, May 13 - 16, 1990. Plenum Press, New York, S 235–251Google Scholar
  12. Fox M et al (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci 102(27):9673–9678PubMedCentralCrossRefPubMedGoogle Scholar
  13. Gani C et al (2008) Long term effects after feedback of slow cortical potentials and of theta-beta-amplitudes in children with attention-deficit/hyperactivity disorder (ADHD). International Journal of Bioelectromagnetism 10(4):209–232Google Scholar
  14. Gevensleben H et al (2009) Distinct EEG effects related to neurofeedback training in children with ADHD: A randomized controlled trial. International Journal of Psychophysiology 74:149–157CrossRefPubMedGoogle Scholar
  15. Gevensleben H et al (2009) Is neurofeedback an efficacious treatment for ADHD? A randomised controlled clinical trial. Journal of Child Psychology and Psychiatry 50:780–789CrossRefPubMedGoogle Scholar
  16. Gevensleben H et al (2010) Neurofeedback-Training bei Kindern mit Aufmerksamkeitsdefizit-/ Hyperaktivitätsstörung (ADHS) Effekte auf Verhaltens – und neurophysiologischer Ebene. Zeitschrift für Kinder- und Jugendpsychiatrie und Psychotherapie 38(6):409–420CrossRefPubMedGoogle Scholar
  17. Gevensleben H et al (2010) Neurofeedback training in children with ADHD: 6-month follow-up of a randomised controlled trial. European Child and Adolescent Psychiatry 19:715–724PubMedCentralCrossRefPubMedGoogle Scholar
  18. Greicius MD et al (2009) Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex 19:72–78PubMedCentralCrossRefPubMedGoogle Scholar
  19. He B, Raichle ME (2009) The fMRI signal, slow cortical potential and consciousness. Trends Cogn Sci 13:302–309PubMedCentralCrossRefPubMedGoogle Scholar
  20. He B et al (2008) Electrophysiological correlates of the brain’s intrinsic large-scale functional architecture. Proc Natl Acad Sci 105(41):16039–16044PubMedCentralCrossRefPubMedGoogle Scholar
  21. Heinrich H et al (2004) Training of slow cortical potentials in attention-deficit/hyperactivity disorder: Evidence for positive behavioral and neurophysiological effects. Biological Psychiatry 55:772–775CrossRefPubMedGoogle Scholar
  22. Helps S et al (2008) Very low frequency EEG oscillations and the resting brain in young adults: a preliminary study of localisation, stability and association with symptoms of inattention. J Neural Transm 115:279–285CrossRefPubMedGoogle Scholar
  23. Helps S et al (2010) Altered spontaneous low frequency brain activity in attention deficit/hyperactivity disorder. Brain 13:134–143CrossRefGoogle Scholar
  24. Holtmann M et al (2004) Neurofeedback in der Behandlung der Aufmerksamkeitsdefizit-Hyperaktivitätsstörung (ADHS) im Kindes-und Jugendalter. Zeitschrift für Kinder- und Jugendpsychiatrie und Psychotherapie 32:187–200CrossRefPubMedGoogle Scholar
  25. Klingberg et al (2002) Training of working memory in children with ADHD. Journal of Clinical and Experimental Neuropsychology 24(6):781–791CrossRefPubMedGoogle Scholar
  26. Kotchoubey B et al (2001) Modification of slow cortical potentials in patients with refractory epilepsy: A controlled outcome study. Epilepsia 42:406–416CrossRefPubMedGoogle Scholar
  27. Konicar L et al (2015) Brain self-regulation in criminal Psychopaths. SCIENTIFIC REPORT 5:9426 doi:10.1038/srep09426.CrossRefGoogle Scholar
  28. Leins U et al (2006) Neurofeedback der langsamen kortikalen Potenziale und der Theta/Beta Aktivität für Kinder mit einer ADHS: ein kontrollierter Vergleich. Prax Kinderpsychol Kinderpsychiat 55:384–407Google Scholar
  29. Leins U et al (2007) Neurofeedback for children with ADHD: A comparison of SCP- and theta/beta-protocols. Appl Psychophysiol Biofeedback 32:73–88CrossRefPubMedGoogle Scholar
  30. Mayer K et al (2012) Neurofeedback for adult attention-deficit/hyperactivity disorder: Investigation of slow cortical potential Neurofeedback – preliminary results. Journal of Neurotherapy 16(1):37–45CrossRefGoogle Scholar
  31. Meichenbaum D, Goodman J (1971) Training impulsive children to talk to themselves: a means of developing self-control. Journal Abnormal Psychol 77:115–126CrossRefGoogle Scholar
  32. Monto S et al (2008) Very slow EEG fluctuations predict the dynamics of stimulus detection and oscillation amplitudes in humans. The Journal of Neuroscience 28(33):8268–8272CrossRefPubMedGoogle Scholar
  33. Schomer DL, da Silva FHL (2011) Niedermeyer‘s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 6. Aufl. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  34. Northoff G et al (2010) The brain and its resting state activity – Experimental and methodological implications. Progress in Neurobiology 92:593–600CrossRefPubMedGoogle Scholar
  35. Otti A et al (2010) I know the pain you feel – how the human brain’s default mode predicts our resonance to another’s suffering. Neuroscience 169:143–148CrossRefPubMedGoogle Scholar
  36. Otti A et al (2012) Default Mode Netzwerk des Gehirns. Nervenarzt 83:16–24CrossRefPubMedGoogle Scholar
  37. Palva JM (vorab online veröffentlicht) Infra-slow fluctuations in electrophysiological recordings, blood-oxygenation-level-dependent signals, and psychophysical time series. http://www.researchgate.net/publication/221687749_Infra-slow_fluctuations_in_electrophysiological_recordings_blood-oxygenation-level-dependent_signals_and_psychophysical_time_series. Abgerufen am 28.02.2012
  38. Raichle ME (2009) A paradigm shift in functional brain imaging. J Neurosci 29(41):12729–12734CrossRefPubMedGoogle Scholar
  39. Raichle ME (2010) Two views of brain function. Trends in Cognitive Sciences 14(4):180–190CrossRefPubMedGoogle Scholar
  40. Raichle ME, Mintun MA (2006) Brain work and brain imaging. Ann Rev Neurosci 29:449–476CrossRefPubMedGoogle Scholar
  41. Raichle ME et al (2001) A default mode of brain function. Proc Natl Acad Sci 98:676–682PubMedCentralCrossRefPubMedGoogle Scholar
  42. Rothenberger A (2009) Brain oscillations forever – neurophysiology in future research of child psychiatric problems. J Child Psychol Psychiatr 50:79–86CrossRefGoogle Scholar
  43. Schanz J, Schneider E (2014) ADHS und die sozio-emotionale Entwicklung -Verbesserungen durch Neurofeedback. Praxis Ergotherapie 6:325–330Google Scholar
  44. Shelien Y et al (2009) The default mode network and self-referential processes in depression. Proc Natl Acad Sci 106:1942–1947CrossRefGoogle Scholar
  45. Sherlin L et al (2010) A position paper on neurofeedback for the treatment of ADHD. Journal of Neurotherapy 14(2):66–78CrossRefGoogle Scholar
  46. Sonuga-Barke EJ, Castellanos FX (2007) Spontaneous attentional fluctuations in impaired states and pathological conditions: a neurobiological hypothesis. Neurosci Biobehav Rev 31:977–986CrossRefPubMedGoogle Scholar
  47. Strehl U et al (2006) Self-regulation of slow cortical potentials: A new treatment for children with attention-deficit/hyperactivity disorder. Pediatrics 118:1530–1540CrossRefGoogle Scholar
  48. Sterman M (2004) What’s it all about Alpha? 35th Anniversary Meeting of the Association for Applied Psychophysiology and Biofeedback, Colorado Springs, Colorado.Google Scholar
  49. Universität Trier Fachbereich I – Psychologie Psychophysiologische Methodik (2003) Ereigniskorrelierte Potentiale. http://www.neurolabor.de/ereigniskorreliert.pdf. Zugegriffen: 17.07.2012Google Scholar
  50. Wangler S et al (2011) Neurofeedback in children with ADHD: specific event-related potential findings of a randomized controlled trial. Clin EEG Neurosci 22(5):942–950Google Scholar
  51. Zhang D, Raichle ME (2010) Disease and the brain’s dark energy. Nat Rev Neurol 6:15–28. doi:10.1038/nrneurol.198CrossRefPubMedGoogle Scholar
  52. Zang YF et al (2007) Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev 29:83–91CrossRefPubMedGoogle Scholar
  53. Zschocke S (2002) Klinische Elektroenzephalographie. Springer, Heidelberg New York TokioCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Edith Schneider
    • 1
  • Gert Strauß
    • 2
  1. 1.Praxis für Neurofeedback, Biofeedback und ErgotherapieStuttgartDeutschland
  2. 2.Praxis für Ergotherapie, Biofeedback and NeurofeedbackHeidelbergDeutschland

Personalised recommendations