A Dichotomy Result for Ramsey Quantifiers

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9160)


Ramsey quantifiers are a natural object of study not only for logic and computer science, but also for formal semantics of natural language. Restricting attention to finite models leads to the natural question whether all Ramsey quantifiers are either polynomial-time computable or NP-hard, and whether we can give a natural characterization of the polynomial-time computable quantifiers. In this paper, we first show that there exist intermediate Ramsey quantifiers and then we prove a dichotomy result for a large and natural class of Ramsey quantifiers, based on a reasonable and widely-believed complexity assumption. We show that the polynomial-time computable quantifiers in this class are exactly the constant-log-bounded Ramsey quantifiers.


Dichotomy Theorem Generalize Quantifier Dichotomy Result Natural Class Finite Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Peters, S., Westerståhl, D.: Quantifiers in Language and Logic. Clarendon Press, Oxford (2006)Google Scholar
  2. 2.
    Mostowski, M., Wojtyniak, D.: Computational complexity of the semantics of some natural language constructions. Ann. Pure Appl Logic 127(1–3), 219–227 (2004)CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Sevenster, M.: Branches of imperfect information: logic, games, and computation. Ph.D. thesis, University of Amsterdam (2006)Google Scholar
  4. 4.
    Sevenster, M.: Dichotomy result for independence-friendly prefixes of generalized quantifiers. J. Symb. Logic 79(4), 1224–1246 (2014)CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    Szymanik, J.: Quantifiers in TIME and SPACE. computational complexity of generalized quantifiers in natural language. Ph.D. thesis, University of Amsterdam, Amsterdam (2009)Google Scholar
  6. 6.
    Szymanik, J.: Computational complexity of polyadic lifts of generalized quantifiers in natural language. Linguist. Philos. 33, 215–250 (2010)CrossRefGoogle Scholar
  7. 7.
    Dalrymple, M., Kanazawa, M., Kim, Y., Mchombo, S., Peters, S.: Reciprocal expressions and the concept of reciprocity. Linguist. Philos. 21, 159–210 (1998)CrossRefGoogle Scholar
  8. 8.
    Schlotterbeck, F., Bott, O.: Easy solutions for a hard problem? The computational complexity of reciprocals with quantificational antecedents. J. Logic Lang. Inform. 22(4), 363–390 (2013)CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Thorne, C., Szymanik, J.: Semantic complexity of quantifiers and their distribution in corpora. In: Proceedings of the International Conference on Computational Semantics (2015)Google Scholar
  10. 10.
    Väänänen, J.: Unary quantifiers on finite models. J. Logic Lang. Inform. 6(3), 275–304 (1997)CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    Hella, L., Väänänen, J., Westerståhl, D.: Definability of polyadic lifts of generalized quantifiers. J. Logic Lang. Inform. 6(3), 305–335 (1997)CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Lindström, P.: First order predicate logic with generalized quantifiers. Theoria 32, 186–195 (1966)MathSciNetMATHGoogle Scholar
  13. 13.
    Immerman, N.: Descriptive Complexity. Texts in Computer Science. Springer, New York (1998)Google Scholar
  14. 14.
    Blass, A., Gurevich, Y.: Henkin quantifiers and complete problems. Ann. Pure Appl. Logic 32, 1–16 (1986)CrossRefMathSciNetMATHGoogle Scholar
  15. 15.
    Ladner, R.E.: On the structure of polynomial time reducibility. J. ACM 22(1), 155–171 (1975)CrossRefMathSciNetMATHGoogle Scholar
  16. 16.
    Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the Tenth Annual ACM Symposium on Theory of Computing, STOC 1978, New York, NY, USA, pp. 216–226. ACM (1978)Google Scholar
  17. 17.
    Grädel, E., Kolaitis, P.G., Libkin, L., Marx, M., Spencer, J., Vardi, M.Y., Venema, Y., Weinstein, S.: Finite Model Theory and Its Applications. Texts in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (2007)MATHGoogle Scholar
  18. 18.
    Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci. 62(2), 367–375 (2001)CrossRefMathSciNetMATHGoogle Scholar
  19. 19.
    Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the exponential time hypothesis. Bull. EATCS 105, 41–72 (2011)MathSciNetMATHGoogle Scholar
  20. 20.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006)Google Scholar
  21. 21.
    Chen, J., Chor, B., Fellows, M., Huang, X., Juedes, D., Kanj, I.A., Xia, G.: Tight lower bounds for certain parameterized NP-hard problems. Inf. Comput. 201(2), 216–231 (2005)CrossRefMathSciNetMATHGoogle Scholar
  22. 22.
    Ramsey, F.: On a problem of formal logic. Proc. London Math. Soc. 30(2), 338–384 (1929)MathSciNetGoogle Scholar
  23. 23.
    Cai, L., Juedes, D., Kanj, I.: The inapproximability of non-NP-hard optimization problems. Theoret. Comput. Sci. 289(1), 553–571 (2002)CrossRefMathSciNetMATHGoogle Scholar
  24. 24.
    Chen, J., Huang, X., Kanj, I.A., Xia, G.: Strong computational lower bounds via parameterized complexity. J. Comput. Syst. Sci. 72(8), 1346–1367 (2006)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Algorithms and Complexity GroupVienna University of TechnologyViennaAustria
  2. 2.Institute for Logic, Language and ComputationUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations