• Qing-Ping ZengEmail author
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)


The exact mechanisms behind aging-related diseases remain unknown. Oxidative/nitrosative stress-mediated posttranslational modifications leading to protein misfolding and structural/functional abnormality have been supposed to be the plausible pathogenic initiators of neurodegenerative diseases. Obesity might be an outcome of the activation of iNOS and inactivation of eNOS, leading to mitochondrial loss and adipose whitening without adipose burning. Inflammation-driven mitochondrial dysfunction might be the intrinsic effector of Warburg effects showing potent ROS burst, which should enhance mutagenesis and tumorigenesis/carcinogenesis.


Aging-related disease Cancer Obesity Warburg effect 


  1. Asterholm IW, Tao C, Morley TS, Wang QA, Delgado-Lopez F, Wang ZW, Scherer PE (2014) Adipocyte inflammation is essential for healthy adipose tissue expansion and remodeling. Cell Metab 20:103–118CrossRefGoogle Scholar
  2. Attene-Ramos MS, Wagner ED, Gaskins HR, Plewa MJ (2007) Hydrogen sulfide induces direct radical-associated DNA damage. Mol Cancer Res 5:455–459CrossRefGoogle Scholar
  3. Bao F, Wu P, Xiao N, Qiu F, Zeng QP (2012) Nitric oxide-driven hypoxia initiates synovial angiogenesis, hyperplasia, and inflammatory lesions in mice. PLoS ONE 7:e34494CrossRefGoogle Scholar
  4. Blaut M (2014) Gut microbiota and energy balance: role in obesity. Proc Nutr Soc 18:1–8CrossRefGoogle Scholar
  5. Bondy S, Maiese K (2010) Aging and age-related disorders. Humana Press/Springer, New York/DordrechtCrossRefGoogle Scholar
  6. Bossy B, Petrilli A, Klinglmayr E, Chen J, Lütz-Mindl U, Knott AB, Masliah E, Schwarzenbacher R, Bossy-Wetzel E (2010) S-nitrosylation of DRP1 does not affect enzymatic activity and is not specific to Alzheimer′s disease. J Alzheimer’s Dis 20:S513–S526Google Scholar
  7. Boveris A, Carreras MC, Poderoso JJ (2010) The regulation of cell energetics and mitochondrial signaling by NO. In: Ignarro LJ (ed) Nitric oxide: biology and pathobiology, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  8. Caccamo A, Majumder S, Richardson A, Strong R, Oddo S (2010) Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-β and tau: Effects on cognitive impairments. J Biol Chem 285:13107–13120CrossRefGoogle Scholar
  9. Chen CH, Lin H, Chuang SM, Lin SY, Chen JJ (2010) Acidic stress facilitates tyrosine phosphorylation of HLJ1 to associate with actin cytoskeleton in lung cancer cells. Exp Cell Res 316:2910–2921CrossRefGoogle Scholar
  10. Cho DH, Nakamura T, Fang JG, Cieplak P, Godzik A, Gu ZZ, Lipton SA (2009) S-nitrosylation of DRP1 mediates β-amyloid-related mitochondria fission and neuronal injury. Science 324:102CrossRefGoogle Scholar
  11. Choi KS, Bae MK, Jeong JW, Moon HE, Kim KW (2003) Hypoxia-induced angiogenesis during carcinogenesis. J Biochem Mol Biol 36:120–127CrossRefGoogle Scholar
  12. Cobbs CS, Samanta M, Harkins LE, Gillespie GY, Merrick BA, MacMillan-Crow LA (2001) Evidence for peroxynitrite-mediated modifications to p53 in human gliomas: possible functional consequences. Arch Biochem Biophys 394:167–172CrossRefGoogle Scholar
  13. Ding S, Chi MM, Scull BP, Rigby R, Schwerbrock NM, Magness S, Jobin C, Lund PK (2010) High-fat diet: bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse. PLoS ONE 5:e12191CrossRefGoogle Scholar
  14. Eve DJ, Nisbet AP, Kingsbury AE, Hewson EL, Daniel SE, Lees AJ, Marsden CD, Forster OJ (1998) Basal ganglia neuronal nitric oxide synthase mRNA expression in Parkinson’s disease. Brain Res Mol Biol 63:62–71CrossRefGoogle Scholar
  15. Everard A, Matamoros S, Geurts L, Delzenne NM, Cani PD (2014) Saccharomyces boulardii administration changes gut microbiota and reduces hepatic steatosis, low-grade inflammation, and fat mass in obese and type 2 diabetic db/db mice. mBio 5:e01011–e01014Google Scholar
  16. Fang JS, Gillies RD, Gatenby RA (2008) Adaptation to hypoxia and acidosis in carcinogenesis and tumor progression. Semin Cancer Biol 18:330–337CrossRefGoogle Scholar
  17. Frasca F, Pandini G, Scalia P, Sciacca L, Mineo R, Costantino A, Goldfine ID, Belfiore A, Vigneri R (1999) Insulin receptor isoform A, a newly recognized, high-affinity insulin-like growth factor II receptor in fetal and cancer cells. Mol Cell Biol 19:3278–3288Google Scholar
  18. Gatto EM, Riobo NA, Carreras MC, Chernavsky A, Rubio A, Satz L, Poderoso JJ (2000) Overexpression of neutrophil neuronal NOS in Parkinson’s disease. NO 4:534–539Google Scholar
  19. Ghosh HS, McBurney M, Robbins PD (2010) SIRT1 negatively regulates the mammalian target of rapamycin. PLoS ONE 5:e9199CrossRefGoogle Scholar
  20. Gillies RJ, Gatenby RA (2007) Adaptive landscapes and emergent phenotypes: why do cancers have high glycolysis? J Bioenerg Biomembr 39:251–257CrossRefGoogle Scholar
  21. Gong Y, Dou LJ, Liang J (2014) Link between obesity and cancer: role of triglyceride/free fatty acid cycling. Eur Rev Med Pharmacol Sci 18:2808–2820Google Scholar
  22. Good PF, Hsu A, Werner P, Perl DP, Olanow CW (1998) Protein nitration in Parkinson’s disease. J Neuropathol Exp Neurol 57:338–342CrossRefGoogle Scholar
  23. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899CrossRefGoogle Scholar
  24. Gu ZZ, Nakamura T, Lipton SA (2010) Redox reactions induced by nitrosative stress mediate protein misfolding and mitochondrial dysfunction in neurodegenerative diseases. Mol Neurobiol 41:55–72CrossRefGoogle Scholar
  25. Hahn T, Barth S, Hofmann W, Reich O, Lang I, Desoye G (1998) Hyperglycemia regulates the glucose-transport system of clonal choriocarcinoma cells in vitro. A potential molecular mechanism contributing to the adjunct effect of glucose in tumor therapy. Int J Cancer 78:353–360CrossRefGoogle Scholar
  26. Han L, Ma Q, Li J, Liu H, Li W, Ma G, Xu Q, Zhou S, Wu E (2011) High glucose promotes pancreatic cancer cell proliferation via the induction of EGF expression and transactivation of EGFR. PLoS ONE 6:e27074CrossRefGoogle Scholar
  27. Hawley SA, Fullerton MD, Ross FA, Schertzer JD, Chevtzoff C, Walker KJ, Peggie MW, Zibrova D, Green KA, Mustard KJ, Kemp BE, Sakamoto K, Steinberg GR, Hardie DG (2012) The ancient drug salicylate directly activates AMP-activated protein kinase. Science 336:918–922CrossRefGoogle Scholar
  28. Heinrichsdorff J, Olefsky JM (2012) Fetuin-A: the missing link in lipid-induced inflammation. Nat Med 18:1182–1183CrossRefGoogle Scholar
  29. Henao-Meijia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, Thaiss CA, Kau AL, Eisenbarth SC, Jurczak MJ, Camporez JP, Shulman GI, Gordon JI, Hoffman HM, Flavell RA (2012) Inflammasome-mediated dysbiosis regulates progression of NALFD and obesity. Nature 482:179–185Google Scholar
  30. Hjelmeland AB, Wu Q, Heddleston JM, Choudhary GS, MacSwords J, Lathia JD, McLendon R, Lindner D, Sloan A, Rich JN (2011) Acidic stress promotes a glioma stem cell phenotype. Cell Death Differ 18:829–840CrossRefGoogle Scholar
  31. Ibrahim M, Farghaly E, Goma W, Kelleni M, Abdelrahman AM (2011) Nitro-aspirin is a potential therapy for non alcoholic fatty liver disease. Euro J Pharmacol 659:289–295CrossRefGoogle Scholar
  32. Ignarro LJ (2010) NO: biology and pathobiology, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  33. Imajo K, Fujita K, Yoneda M, Nozaki Y, Ogawa Y, Shinohara Y, Kato S, Mawatari H, Shibata W, Kitani H, Ikejima K, Kinkoshi H, Nakajima N, Saito S, Maeyama S, Watanabe S, Wada K, Nakajima (2012) Hyperresponsibility to low-does endotoxin during progression to nonalcoholic steatohepatitis is regulated by leptin-mediated signaling. Cell Metab 16:44–54CrossRefGoogle Scholar
  34. Ischiropoulos H (2009) Protein tyrosine nitration: an update. Arch Biochem Biophys 484:117–121CrossRefGoogle Scholar
  35. Jais A, Einwallner E, Sharif O, Gossens K, Lu TTH, Soyal SM, Medgyesi D, Neureiter D, Paier-Pourani J, Dalgaard K, Duvigneau JC, Lindroos-Christensen J, Zapf TC, Amann S, Saluzzo S, Jantscher F, Stiedl P, Todoric J, Martins R, Oberkofler H, Muller S, Hauser-Kronberger C, Kenner L, Casanova E, Sutterluty-Fall H, Bilban M, Miller K, Kozlov AV, Krempler F, Knapp S, Lumeng CN, Patsch W, Wagner O, Pospisilik JA, Esterbauer H (2014) Heme oxygenase-1 drives metaflammation and insulin resistance in mouse and man. Cell 158:25–40CrossRefGoogle Scholar
  36. Joost HG (2014) Diabetes and cancer: epidemiology and potential mechanisms. Diab Vascul Dis Res 11:390–394CrossRefGoogle Scholar
  37. Katz DL (2014) Obesity is not a disease. Nature 508:S57CrossRefGoogle Scholar
  38. Katz O, Stuible M, Golishevski N, Lifshitz L, Tremblay ML, Gassmann M, Mittelman M, Neumann E (2010) Erythropoietin treatment leads to reduced blood glucose levels and body mass: insights from murine models. J Endocrinol 205:87–95CrossRefGoogle Scholar
  39. Kim JM, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13:132–141CrossRefGoogle Scholar
  40. Kim KA, Gu W, Lee IA, Joh EH, Kim DH (2012) High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PLoS ONE 7:e47713CrossRefGoogle Scholar
  41. Lam PY, Yin F, Hamilton RT, Boveris A, Cadenas E (2009) Elevated neuronal nitric oxide synthase expression during ageing and mitochondrial energy production. Free Radic Res 43:431–439CrossRefGoogle Scholar
  42. Lamming DW, Ye L, Katajisto P, Goncalves MD, Saitoh M, Stevens DM, Davis JG, Salmon AB, Richardson A, Ahima RS, Guertin DA, Sabatini DM, Baur JA (2012) Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335:1638–1643CrossRefGoogle Scholar
  43. Lee YS, Kim JW, Osborne O, Oh DY, Sasik R, Schenk S, Chen A, Chung HY, Murphy A, Watkins SM, Quehenberger O, Johnson RS, Olefsky JM (2014) Increased adipocyte O2 consumption triggers HIF-1α, causing Inflammation and insulin resistance in obesity. Cell 157:1339–1352CrossRefGoogle Scholar
  44. Leslie M (2011) Growth defects blocks cancer and diabetes. Science 331:837CrossRefGoogle Scholar
  45. Levine TB, Levine AB (2011) Say NO to aging: how nitric oxide (NO) prolongs life. NorLights Press, NashvilleGoogle Scholar
  46. Levine B, Mizushima N, Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469:323–335CrossRefGoogle Scholar
  47. Li W, Zhu S, Li J, Huang Y, Zhou R, Fan X, Yang H, Gong X, Eissa NT, Jahnen-Dechent W, Wang P, Tracey KJ, Sama AE, Wang H (2011) A hepatic protein, fetuin-A, occupies a protective role in lethal systemic inflammation. PLoS ONE 6:e16945CrossRefGoogle Scholar
  48. Li R, Grimm SA, Chrysoverqis K, Kosak J, Wang X, Du Y, Burkholder A, Janardhan K, Mav D, Shah R, Eling TE, Wade PA (2014) Obesity, rather than diet, drives epigenomic alterations in colonic epithelium resembling cancer progression. Cell Metab 19:702–711CrossRefGoogle Scholar
  49. Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260:1130–1132CrossRefGoogle Scholar
  50. Liu H, Ma Q, Li J (2011) High glucose promotes cell proliferation and enhances GDNF and RET expression in pancreatic cancer cells. Mol Cell Biochem 347:95–101CrossRefGoogle Scholar
  51. Manavathi B, Dey O, Gajulapalli VNR, Bhatia RS, Bugide S, Kumar R (2013) Derailed estrogen signaling and breast cancer: an authentic couple. Endoc Rev 34:1–32CrossRefGoogle Scholar
  52. Masur K, Vetter C, Hinz A, Tomas N, Henrich H, Niggemann B, Zanker KS (2011) Diabetogenic glucose and insulin concentrations modulate transcriptome and protein levels involved in tumour cell migration, adhesion and proliferation. Br J Cancer 104:345–352CrossRefGoogle Scholar
  53. Morselli E, Maiuri MC, Markaki M, Megalou E, Pasparaki A, Palikaras K, Criollo A, Galluzzi L, Malik SA, Vitale I, Michaud M, Madeo F, Tavernarakis N, Kroemer G (2010) Calorie restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy. Cell Death Dis 1:e10CrossRefGoogle Scholar
  54. Morselli E, Fuente-Martin E, Finan B, Kim M, Frank A, Garcia-Caceres C, Navas CR, Gordillo R, Neinast M, Kalainayakan SP, Li DL, Gao YQ, Yi CX, Hahner L, Palmer BF, Tschop MH, Clegg DJ (2014) Hypothalamic PGC-1a protects against high-fat diet exposure by regulating ERa. Cell Rep 9:633–645CrossRefGoogle Scholar
  55. Mueller E, Sarraf P, Tontonoz P, Evans RM, Martin KJ, Zhang M, Fletcher C, Singer S, Spiegelman BM (1998) Terminal differentiation of human breast cancer through PPAR gamma. Mol Cell 1:465–470CrossRefGoogle Scholar
  56. Okumura M, Yamamoto M, Sakuma H, Kojima T, Maruyama T, Jamali M, Cooper DR, Yasuda K (2002) Leptin and high glucose stimulate cell proliferation in MCF-7 human breast cancer cells: reciprocal involvement of PKC-alpha and PPAR expression. Biochim Biophys Acta 1592:107–116CrossRefGoogle Scholar
  57. Pal D, Dasgupta S, Kundu R, Maitra S, Das G, Mukhopadhyay S, Ray S, Majumdar SS, Bhattacharya S (2012) Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nat Med 18:1279–1285CrossRefGoogle Scholar
  58. Pao GM, Zhu Q, Perez-Garcia CG, Chou SJ, Suh H, Gage FH, O’Leary DD, Verma IM (2014) Role of BRCA1 in brain development. Proc Natl Acad Sci USA 111:E1240–E1248CrossRefGoogle Scholar
  59. Papa V, Pezzino V, Costantino A, Belfiore A, Giuffrida D, Frit-titta L, Vannelli GB, Brand R, Goldfine ID, Vigneri R (1990) Elevated insulin receptor content in human breast cancer. J Clin Invest 86:1503–1510CrossRefGoogle Scholar
  60. Papp-Szabó E, Josephy PD, Coomber BL (2005) Microenvironmental influences on mutagenesis in mammary epithelial cells. Intern J Cancer 116:679–685CrossRefGoogle Scholar
  61. Pilon G, Charbonneau A, White PJ, Dallaire P, Perreault M, Kapur S, Marette A (2010) Endotoxin mediated-iNOS induction causes insulin resistance via ONOO induced tyrosine nitration of IRS-1 in skeletal muscle. PLoS ONE 5:e15912CrossRefGoogle Scholar
  62. Qabazard B, Li L, Gruber J, Peh MT, Ng LF, Kumar SD, Rose P, Tan CH, Dymock BW, Wei F, Swain SC, Halliwell B, Stürzenbaum SR, Moore PK (2014) Hydrogen sulfide is an endogenous regulator of aging in Caenorhabditis elegans. Antioxid Redox Signal 20:2621–2630CrossRefGoogle Scholar
  63. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, Peng Y, Zhang D, Jie Z, Wu W, Qin Y, Xue W, Li J, Han L, Lu D, Wu P, Dai Y, Sun X, Li Z, Tang A, Zhong S, Li X, Chen W, Xu R, Wang M, Feng Q, Gong M, Yu J, Zhang Y, Zhang M, Hansen T, Sanchez G, Raes J, Falony G, Okuda S, Almeida M, LeChatelier E, Renault P, Pons N, Batto JM, Zhang Z, Chen H, Yang R, Zheng W, Li S, Yang H, Wang J, Ehrlich SD, Nielsen R, Pedersen O, Kristiansen K, Wang J (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490:55–60Google Scholar
  64. Rajapakse AG, Yepuri G, Carvas JM, Stein S, Matter CM, Scerri I, Ruffieux J, Montani JP, Ming XF, Yang ZH (2011) Hyperactive S6K1 mediates oxidative stress and endothelial dysfunction in aging: Inhibition by resveratrol. PLoS ONE 6:e19237CrossRefGoogle Scholar
  65. Rey FE, Gonzalez MD, Cheng JY, Wu M, Ahern PP, Gordan JI (2013) Metabolic niche of a prominent sulfate-reducing human gut bacterium. Proc Natl Acad Sci USA 110:13582–13587CrossRefGoogle Scholar
  66. Rippe C, Lesniewski L, Connell M, LaRocca T, Donato A, Seals D (2010) Short-term calorie restriction reverses vascular endothelial dysfunction in old mice by increasing nitric oxide and reducing oxidative stress. Aging Cell 9:304–312CrossRefGoogle Scholar
  67. Rubinsztein DC, Mariño G, Kroemer G (2011) Autophagy and aging. Cell 146:682–695CrossRefGoogle Scholar
  68. Sarkar S, Korolchuk VI, Renna M, Imarisio S, Fleming A, Williams A, Garcia-Arencibia M, Rose C, Luo S, Underwood BR, Kroemer G, O’Kane CJ, Rubinsztein DC (2011) Complex inhibitory effects of nitric oxide on autophagy. Mol Cell 43:19–32CrossRefGoogle Scholar
  69. Ryu TY, Park J, Scherer PE (2014) Hyperglycemia as a risk factor for cancer progression. Diabetes Metab J 38:330–336Google Scholar
  70. Savage KI, Matchett KB, Barros EM, Cooper KM, Irwin GW, Gorski JJ, Orr KS, Vohhodina J, Kavanagh JN, Madden AF, Powell A, Manti L, McDade SS, Park BH, Prise KM, McIntosh SA, Salto-Tellez M, Richard DJ, Elliott CT, Harkin DP (2014) BRCA1 deficiency exacerbates estrogen-induced DNA damage and genomic instability. Cancer Res 74:2773–2784CrossRefGoogle Scholar
  71. Shimizu I, Aprahamin T, Kikuchi R, Shimizu A, Papanicolaou KN, MacLauchlan S, Maruyama S, Walsh K (2014) Vascular rarefaction mediates whitening of brown fat in obesity. J Clin Invest 124:2099–2112CrossRefGoogle Scholar
  72. Shukla PC, Singh KK, Quan A, Al-Omran M, Teoh H, Lovren F, Cao L, Rovira II, Pan Y, Brezden-Masley C, Yanagawa B, Gupta A, Deng CX, Coles JG, Leong-Poi H, Stanford WL, Parker TG, Schneider MD, Finkel T, Verma S (2011) BRCA1 is an essential regulator of heart function and survival following myocardial infarction. Nat Commun 2:593CrossRefGoogle Scholar
  73. Suh SH, Kim KW (2011) Diabetes and cancer: is diabetes causally related to cancer? Diab Metab J 35:193–198CrossRefGoogle Scholar
  74. Takata K, Tomita T, Okuno T, Kinoshita M, Koda T, Honorat JA, Takei M, Hagihara K, Sugimoto T, Mochizuki H, Sakoda S, Nakatsuji Y (2015) Dietary yeasts reduce inflammation in central nerve system via microflora. Ann Clin Transl Neurol 2:56–66CrossRefGoogle Scholar
  75. Taubes G (2012a) Unreveling the obesity-cancer connection. Science 335:28–32CrossRefGoogle Scholar
  76. Taubes G (2012b) Cancer prevention with a diabetes pill? Science 335:29CrossRefGoogle Scholar
  77. Tsai CY, Peh MT, Feng W, Dymock BW, Moore PK (2015) Hydrogen sulfide promotes adipogenesis in 3T3L1 cells. PLoS ONE 10:e0119511CrossRefGoogle Scholar
  78. Tsuchiya K, Sakai H, Iwashima F, Yoshimoto T, Shichiri M, Hirata Y (2007) Chronic blockade of nitric oxide synthesis reduces adiposity and improves insulin resistance in high fat-induced obese mice. J Biol Chem 148:4548–4556Google Scholar
  79. Veit C, Genze F, Menke A, Hoeffert S, Gress TM, Gierschik P, Giehl K (2004) Activation of phosphatidylinositol 3-kinase and extracellular signal-regulated kinase is required for glial cell line-derived neurotrophic factor-induced migration and invasion of pancreatic carcinoma cells. Cancer Res 64:5291–5300CrossRefGoogle Scholar
  80. Vermeiren J, Van de Wiele T, Van Nieuwenhuyse G, Boeckx P, Verstraete W, Boon N (2012) Sulfide- and nitrite-dependent nitric oxide production in the intestinal tract. Microb Biotechnol 5:379–387CrossRefGoogle Scholar
  81. Wang F, Tu T, Huang GH, Cai D, Liang XL, Su HY, Zhu ZJ, Li DL, Yang Y, Shen PH, Mao RF, Yu L, Zhao MM, Li QY (2015) Gut microbiota community and its assembly associated with age and diet in Chinese centenarians. J Microbiol Biotechnol (Epub ahead of print)Google Scholar
  82. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796–1808CrossRefGoogle Scholar
  83. Wink DA, Vodovotz Y, Laval J, Laval F, Dewhirst MW, Mitchell JB (1998) The multifaceted roles of nitric oxide in cancer. Carcinogenesis 19:711–721CrossRefGoogle Scholar
  84. Wu P, Bao F, Zheng Q, Xiao N, Wang DT, Zeng QP (2012) Artemisinin and rapamycin compromise nitric oxide-driven and hypoxia-triggered acute articular synovitis in mice. Sci Sin Vitae 42:724–738CrossRefGoogle Scholar
  85. Yermilov V, Rubio J, Ohshima H (1995) Formation of 8-nitroguanine in DNA treated with peroxynitrite in vitro and its rapid removal from DNA by depurination. FEBS Lett 376:207–210CrossRefGoogle Scholar
  86. Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, Oydomari S, Iwakura Y, Oshima K, Morita H, Honda H, Ishikawa Y, Hara E, Ohtani N (2013) Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499:97–101CrossRefGoogle Scholar
  87. Yuan M, Konstantopoulos N, Lee J, Hansen L, Li ZW, Karin M, Shoeson SE (2001) Reversal of obesity- and diet-induced insulin resistance with salicylate or targeted disruption of Ikkbeta. Science 293:1673–1677CrossRefGoogle Scholar
  88. Zeng QP (2013) S-Nitrosylation-impaired autophagy: an alternative mechanism underlying aging? PeerJ PrePrints 1:e121v1Google Scholar
  89. Zingarelli B, O’Connor M, Wong H, Salzman AL, Szabo C (1996) Peroxynitrite-mediated DNA strand breakage activates poly-adenosine diphosphate ribosyl synthetase and causes cellular energy depletion in macrophages stimulated with bacterial liposaccharide. J Immunol 156:350–358Google Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Tropical Medicine InstituteGuangzhou University of Chinese MedicineGuangzhouChina

Personalised recommendations