ART for Antiaging

  • Qing-Ping ZengEmail author
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)


ART can mimic CR to extend yeast lifespan, during which both ART and CR-triggered NO can activate antioxidative responses and convert the metabolic pattern from biosynthesis to degradation. ART also mimics CR to compromise mouse telomere shortening by upregulating antioxidative enzymes for effective ROS scavenging, which is followed by the alleviation of DNA damage and downregulation of tumor suppressors. This is the first time for having found ART exerting an antiaging role.


Antioxidation ART CR Lifespan Telomere 


  1. Agarwal S, Sharma S, Agarwal V, Roy N (2005) CR augments ROS defense in S. cerevisiae, by a Sir2p independent mechanism. Free Radic Res 39:55–62Google Scholar
  2. Badie S, Escandell JM, Bouwman P, Carlos AR, Thanasoula M, Gallardo MM, Suram A, Jaco I, Benitez J, Herbig U, Blasco MA, Jonkers J, Tarsounas M (2010) BRCA2 acts as RAD51 loader to facilitate telomere replication and capping. Nat Struct Mol Biol 17:1461–1469Google Scholar
  3. Ballal RD, Saha T, Fan S, Haddad BR, Rosen EM (2009) BRCA1 localization to the telomere and its loss from the telomere in response to DNA damage. J Biol Chem 284:36083–36098Google Scholar
  4. Barros MH, Bandy B, Tahara EB, Kowaltowski AJ (2004) Higher respiratory activity decreases mitochondrial reactive oxygen release and increases lifespan in Saccharomyces cerevisiae. J Biol Chem 279:49883–49888Google Scholar
  5. Blagosklonny MV (2010) Linking CR to longevity through sirtuins and autophagy: any role for TOR. Cell Death Dis 1:e12Google Scholar
  6. Boulton SJ (2006) Cellular functions of the BRCA tumour-suppressor proteins. Biochem Soc Trans 34:633–645Google Scholar
  7. Borra MT, Smith BC, Denu JM (2005) Mechanism of human SIRT1 activation by resveratrol. J Biol Chem 280:17187–17195Google Scholar
  8. Brand MD (2000) Uncoupling to survive? The role of mitochondrial inefficiency in ageing. Exp Gerontol 35:811–820Google Scholar
  9. Burnett C, Vallentini S, Cabreiro F, Goss M, Somogyvari M, Piper MD, Hoddinott M, Sutphin GL, Leko V, McElwee JJ, Vazquez-Manrique RP, Orfila AM, Ackerman D, Au C, Vinti G, Riesen M, Howard K, Neri C, Bedalov A, Kaeberlein M, Soti C, Partridge L, Gems D (2011) Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 477:482–485Google Scholar
  10. Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P, Auwerx J (2009) AMPK regulates energy expenditure by modulating NAD metabolism and SIRT1 activity. Nature 458:1056–1060Google Scholar
  11. Castello PR, David PS, McClure T, Crook Z, Poyton RO (2006) Mitochondrial cytochrome c oxidase produces nitric oxide under hypoxic conditions: implications for oxygen sensing and hypoxic signaling in eukaryotes. Cell Metab 3:277–287Google Scholar
  12. Cerqueira FM, Laurindo FRM, Kowaltowski AJ (2011) Mild mitochondrial uncoupling and calorie restriction increase fasting eNOS, akt and mitochondrial biogenesis. PLoS One 6:e18433Google Scholar
  13. Chan SW, Blackburn EH (2002) New ways not to make ends meet: telomerase, DNA damage proteins and heterochromatin. Oncogene 21:553–563Google Scholar
  14. Chen ZP, Mitchelhill KI, Michell BJ, Stapleton D, Rodriguez-Crespo I, Witters LA, Power D, Oritz de Montellano PR, Kemp BE (1999) AMP-activated protein kinase phosphorylation of endothelial nitric oxide synthase. FEBS Lett 443:285–289Google Scholar
  15. Chin RM, Fu X, Pai MY, Vergnes L, Hwang H, Deng G, Diep S, Lomenick B, Meli VS, Monsalve GC, Hu E, Whelan SA, Wang JX, Jung G, Solis GM, Fazlollahi F, Kaweeteerawat C, Quach A, Nili M, Krall AS, Godwin HA, Chang HR, Faull KF, Guo F, Jiang M, Trauger SA, Saghatelian A, Braas D, Christofk HR, Clarke CF, Teitell MA, Petrascheck M, Reue K, Jung ME, Frand AR, Huang J (2014) The metabolite α-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature 510:397–401Google Scholar
  16. Civitarese AE, Carling S, Heilbronn LK, Hulver MH, Ukropcova B, Deutsch WA, Smith SR, Ravussin E, Pennington Team CALERIE (2007) CR increases muscle mitochondrial biogenesis in healthy humans. PLoS Med 4:e76Google Scholar
  17. Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW, Weindruch R (2009) CR delays disease onset and mortality in rhesus monkeys. Science 325:201–204Google Scholar
  18. D’Antona G, Ragni M, Cardile A, Tedesco L, Dossena M, Bruttini F, Caliaro F, Corsetti R, Carruba MO, Valerio A, Nisoli E (2010) Branched-chain amino acid supplementation promotes survival and supports cardiac and skeletal muscle mitochondrial biogenesis in middle-aged mice. Cell Metabol 12:362–372Google Scholar
  19. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM (1999) Activation of NOS in endothelial cells by Akt-dependent phosphorylation. Nature 399:601–605Google Scholar
  20. Fabrizio P, Pozza SD, Pletcher CM, Gendron CM, Longo VD (2001) Regulation of longevity and stress resistance by Sch9 in yeast. Science 292:288–290Google Scholar
  21. Finocchietto P, Barreyro F, Holod S, Peralta J, Franco MC, Mendez C, Converso DP, Estevez A, Carreras MC, Poderoso JJ (2008) Control of muscle mitochondria by insulin entails activation of Akt2-mtNOS pathway: implications for the metabolic syndrome. PLoS One 3:e1749Google Scholar
  22. Fontana L, Klein S (2007) Aging, adiposity, and calorie restriction. JAMA 297:986–994Google Scholar
  23. Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, Franke TF, Papapetropoulos A, Sessa WC (1999) Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399:597–601Google Scholar
  24. Gad MZ (2010) Anti-aging effects of L-arginine. J Adv Res 1:169–177Google Scholar
  25. Gaitanaki C, Konstantina S, Chrysaand S, Beis I (2003) Oxidative stress stimulates multiple MAPK signalling pathways and phosphorylation of the small HSP27 in the perfused amphibian heart. J Exp Biol 206:2759–2769Google Scholar
  26. Giulivi C, Poderoso JJ, Boveris A (1998) Production of nitric oxide by mitochondria. J Biol Chem 273:11038–11043Google Scholar
  27. Gustin MC, Albertyn J, Alexander M, Davenport K (1998) MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 62:1264–1300Google Scholar
  28. Hands SL, Proud CG, Wyttenbach A (2009) mTOR’s role in ageing: protein synthesis or autophagy. Aging 1:586–597Google Scholar
  29. Hansen M, Chandra A, Mitic LL, Onken B, Driscoll M, Kenyon C (2008) A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet 4:e24Google Scholar
  30. Hancock CR, Han DH, Higashida K, Kim SH, Holloszy JO (2011) Does CR induce mitochondrial biogenesis? A reevaluation. FASEB J 25:785–791Google Scholar
  31. Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460:392–395Google Scholar
  32. Hashizume R, Fukuda M, Maeda I, Nishikawa H, Oyake D, Yabuki Y, Ogataand H, Ohta T (2001) The RING heterodimer BRCA1-BARD1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation. J Biol Chem 276:14537–14540Google Scholar
  33. Hewitt G, Jurk D, Marques FDM, Correia-Melo C, Hardy T, Gackowska A, Anderson R, Taschuk M, Mann J, Passos JF (2012) Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nat Comm 3:708Google Scholar
  34. Humpherey DM, Toivonen JM, Giannakou M, Partridge L, Brand MD (2009) Expression of human uncoupling protein-3 in Drosophila insulin-producing cells increases insulin-like peptide (DILP) levels and shortens lifespan. Exp Gerontol 44:316–327Google Scholar
  35. Jiang JC, Jaruga E, Repnevskya MV, Jazwinski SM (2000) An intervention resembling CR prolongs life span and retard aging in yeast. FASEB J 14:2135–2137Google Scholar
  36. Kaeberlein M, Powers RW, Steffen KK (2005a) Cell biology: regulation of yeast replicative lifespan by TOR and Sch9 response to nutrients. Science 310:1193–1196Google Scholar
  37. Kaeberlein M, Hu D, Kerr EO, Tsuchiya M, Westman EA, Dang N, Fields S, Kennedy BK (2005b) Increased lifespan due to CR in respiratory deficient yeast. PLoS Genet 1:e69Google Scholar
  38. Kaeberlein M, Burtner CR, Kennedy BK (2007) Recent developments in yeast aging. PLoS Genet 3:e84Google Scholar
  39. Kamada Y, Sekito T, Ohsumi Y (2004) Autophagy in yeast: A TOR-mediated response to nutrient starvation. Curr Top Microbiol Immunol 279:73–84Google Scholar
  40. Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S (2004) Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Cur Biol 14:885–890Google Scholar
  41. Kenyon C (2005) The plasticity of aging: insights from long-lived mutants. Cell 120:449–460Google Scholar
  42. Kharade SV, Mittal N, Das SP, Sinha P, Roy N (2005) Mrg19 depletion increase S. cerevisiae lifespan by augmenting ROS defence. FEBS Lett 579:6809–6813Google Scholar
  43. King MA, Hands S, Hafiz F, Mizushima N, Tolkovsky AM, Wyttenbach A (2008) Rapamycin inhibits polyglutamine aggregation independently of autophagy by reducing protein synthesis. Mol Pharmacol 73:1052–1063Google Scholar
  44. Kig C, Temizkan G (2009) Nitric oxide as a signaling molecule in the fission yeast Schizosaccharomyces pombe. Protoplasma 238:59–66Google Scholar
  45. Koubova J, Guarente L (2005) How does calorie restriction work? Genes Dev 17:313–321Google Scholar
  46. Lanza IR, Nair KS (2010) Mitochondrial function as a determinant of life span. Pflugers Arch Eur J Physiol 459:277–289Google Scholar
  47. Lanza IR, Zabielski P, Klaus KA, Morse DM, Heppelmann CJ, Bergen HR III, Dasari S, Walrand S, Short KR, Johnson ML, Robinson ML, Schimke JM, Jakaitis DR, Asmann YW, Sun ZF, Nair S (2012) Chronic caloric restriction preserves mitochondrial function in senescence without increasing mitochondrial biogenesis. Cell Metab 16:777–788Google Scholar
  48. Lee WJ, Kim M, Park HS, Kim HS, Jeon MJ, Oh KS, Koh EH, Won JC, Kim MS, Oh GT, Yoon M, Lee KU, Park JY (2006) AMPK activation increases fatty acid oxidation in skeletal muscle by activating PPAR alpha and PGC-1. Biochem Biophys Res Commun 340:291–295Google Scholar
  49. Lefevre SD, van Roermund CW, Wanders RJA, Veenhuis M, van der Klei IJ (2013) The significance of peroxisome function in chronological aging of Saccharomyces cerevisiae. Aging Cell 12:784–793Google Scholar
  50. Lemire BD, Behrendt M, DeCorby A, Gásková D (2009) C. elegans longevity pathways converge to decrease mitochondrial membrane potential. Mech Ageing Dev 130:461–465Google Scholar
  51. Leprivier G, Remke M, Rotblat B, Dubuc A, Mateo AR, Kool M, Agnihotri S, El-Naggar A, Yu B, Somasekharan SP, Faubert B, Bridon G, Tognon CE, Mathers J, Thomas R, Li A, Barokas A, Kwok B, Bowden M, Smith S, Wu X, Korshunov A, Hielscher T, Northcott PA, Galpin JD, Ahern CA, Wang Y, McCabe MG, Collins VP, Jones RG, Pollak M, Delattre O, Gleave ME, Jan E, Pfister SM, Proud CG, Derry WB, Taylor MD, Sorensen PH (2013) The eEF2 kinase confers resistance to nutrient deprivation by blocking translation elongation. Cell 23:1064–1079Google Scholar
  52. Lewinska A, Macierzynska E, Grzelak A, Bartosz G (2011) A genetic analysis of NO-mediated signaling during chronological aging in the yeast. Biogerontol 12:309–320Google Scholar
  53. Li B, Skinner C, Castello PR, Kato M, Easlon E, Xie L, Li TL, Lu SP, Wang C, Tsang F, Poyton RO, Lin SJ (2011) Identification of potential CR-mimicking yeast mutants with increased mitochondrial respiratory chain and NO levels. J Aging Res 2011(673185)Google Scholar
  54. Lin SJ, Defossez PA, Guarente L (2000) Requirement of NAD and SIR2 for life-span extension by CR in Saccharomyces cerevisiae. Science 289:2126–2128Google Scholar
  55. Lin SJ, Kaeberlein M, Andalis AA, Sturtz LA, Defossez PA, Culotta VC, Fink GR, Guarente L (2002) CR extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 418:344–348Google Scholar
  56. Longo VD, Fontana L (2010) CR and cancer prevention: metabolic and molecular mechanisms. Trends Pharmacol Sci 31:89–98Google Scholar
  57. López-Lluch G, Hunt N, Jones B, Zhu M, Jamieson H, Hilmer S, Cascajo MV, Allard J, Ingram DK, Navas P, de Cabo R (2006) Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proc Natl Acad Sci USA 103:1768–1773Google Scholar
  58. Mason M, Nicholes GP, Wilson MT, Cooper CE (2006) Nitric oxide inhibition of respiration involves both competitive (heme) and noncompetitive (copper) binding to cytochrome c oxidase. Proc Natl Acad Sci USA 103:708–713Google Scholar
  59. Mattison JA, Roth GS, Beasley TM, Tilmont EM, Handy AM, Herbert RL, Longo DL, Allison DB, Young JE, Bryant M, Barnard D, Ward WF, Qi W, Ingram DK, de Cabo R (2012) Impact of calorie restriction on health and survival in rhesus monkeys from the NIA study. Nature 489:318–321Google Scholar
  60. Mesquita A, Weinberger M, Silva A, Sampaio-Marques B, Almeida B, Leão C, Costa V, Rodrigues F, Burhans WC, Ludovico P (2010) Caloric restriction or catalase inactivation extends yeast chronological lifespan by inducing hydrogen peroxide and SOD activity. Proc Natl Acad Sci USA 107:15123–15128Google Scholar
  61. Miller BF, Robinson MM, Bruss MD, Hellerstein M, Hamilton KL (2012) A comprehensive assessment of mitochondrial protein synthesis and cellular proliferation with age and caloric restriction. Aging Cell 11:150–161Google Scholar
  62. Morselli E, Maiuri MC, Markaki M, Megalou E, Pasparaki A, Palikaras K, Criollo A, Galluzzi L, Malik SA, Vitale I, Michaud M, Madeo F, Tavernarakis N, Kroemer G (2010) Calorie restriction and resveratrol promote longevity through the SIRT-1-dependent induction of autophagy. Cell Death Dis 1:e10Google Scholar
  63. Nisoli E, Clementi E, Paolucci C, Cozzi V, Tonello C, Sciorati C, Bracale R, Valerio A, Francolini M, Moncada S, Carruba MO (2003) Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science 299:896–899Google Scholar
  64. Nisoli E, Falcone S, Tonello C, Cozzi V, Palomba L, Fiorani M, Pisconti A, Brunelli S, Cardile A, Francolini M, Cantoni O, Carruba MO, Moncada S, Clementi E (2004) Mitochondrial biogenesis by nitric oxide yields functionally active mitochondria in mammals. Proc Natl Acad Sci USA 101:16507–16512Google Scholar
  65. Nisoli E, Tonello C, Cardile A, Cozzi V, Bracale R, Tedesco L, Falcone S, Valerio A, Cantoni O, Clementi E, Moncada S, Carruba MO (2005) Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310:314–317Google Scholar
  66. Nisoli E, Carruba MO (2006) Nitric oxide and mitochondrial biogenesis. J Cell Sci 119:2855–2862Google Scholar
  67. Pan Y, Shadel GS (2009) Extension of chronological life span by reduced TOR signaling requires downregulation of Sch9p and involves increased mitochondrial OXPHOS complex density. Aging 1:131–145Google Scholar
  68. Pan Y, Schroeder EA, Ocampo A, Barrientos A, Shadel GS (2011) Regulation of yeast chronological life span by TORC1 via adaptive mitochondrial ROS signaling. Cell Metab 13:668–678Google Scholar
  69. Pan KZ, Palter JE, Rogers AN, Olsen A, Chen D, Lithgow GJ, Kapahi P (2007) Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans. Aging Cell 6:111–119Google Scholar
  70. Park SJ, Ahmad F, Philp A, Baar K, Williams T, Luo H, Ke H, Rehmann H, Taussig R, Brown AL, Kim MK, Beaven MA, Burgin AB, Manganiello V, Chung JH (2012) Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 148:421–433Google Scholar
  71. Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22:153–183Google Scholar
  72. Pervin S, Singh R, Hernandez E,Wu G, Chaudhuri G (2007) Nitric oxide in physiologic concentrations targets the translational machinery to increase the proliferation of human breast cancer cells: involvement of mammalian target of rapamycin/eIF4E pathway. Cancer Res 67:289–299Google Scholar
  73. Piper PW, Harris NL, MacLean M (2006) Preadaptation to efficient respiratory maintenance is essential both for maximal longevity and the retention of replicative potential in chronological ageing yeast. Mech Ageing Dev 127:733–740Google Scholar
  74. Piper MDW, Partridge L, Raubenheimer D, Simpson SJ (2011) Dietary restriction and aging: a unifying perspective. Cell Metab 14:154–160Google Scholar
  75. Powers RW 3rd, Kaeberlein M, Caldwell SD, Kennedy BK, Fields S (2006) Expression of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev 20:171–184Google Scholar
  76. Qiu X, Brown K, Hirschey MD, Verdin E, Chen D (2010) CR reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metabol 12:662–667Google Scholar
  77. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P (2005) Nutrient control of glucose homeostasis through a complex of PGC-1 alpha and SIRT1. Nature 434:113–118Google Scholar
  78. Rogina B, Helfand SL (2004) Sir2 mediates longevity in the fly through a pathway related to CR. Proc Natl Acad Sci USA 101:15998–16003Google Scholar
  79. Rollis C, Codlin S, Bähler J (2013) TORC1 signaling inhibition by rapamycin and caffeine affect lifespan, global gene expression, and cell proliferation of fission yeast. Aging Cell 12:563–573Google Scholar
  80. Selman C, Tullet JM, Wieser D, Irvine E, Lingard SJ, Choudhury AI, Claret M, Al-Qssab H, Carmignac D, Ramadani F, Woods A, Robinson IC, Schuster E, Batterham RL, Kozma SC, Thomas G, Carling D, Okkenhaug K, Thornton JM, Partridge L, Gems D, Withers DJ (2009) Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science 326:140–144Google Scholar
  81. Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, Emond M, Coskun PE, Ladiges W, Wolf N, Van Remmen H, Wallace DC, Rabinovitch PS (2005) Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308:1909–1911Google Scholar
  82. Schulz TJ, Zarse K, Voigt A, Urban N, Birringer M, Ristow M (2007) Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab 6:280–293Google Scholar
  83. Shaw RJ (2009) LKB1 and AMPK control of mTOR signaling and growth. Acta Physiol 196:65–80Google Scholar
  84. Skinner C, Lin SJ (2010) Effects of calorie restriction on life span of microorganisms. Appl Microbiol Biotechnol 88:817–828Google Scholar
  85. Son Y, Cheong YK, Kim NH, Chung HT, Kang DG, Pae HO (2011) Mitogen-Activated Protein Kinases and reactive oxygen species: How Can ROS Activate MAPK Pathways? J. Signal Transduct 2011(792639)Google Scholar
  86. Spindler SR (2010) CR: from soup to nuts. Ageing Res Rev 9:324–353Google Scholar
  87. Starita LM, Parvin JD (2003) The multiple nuclear functions of BRCA1: transcription, ubiquitination and DNA repair. Curr Opin Cell Biol 15:345–350Google Scholar
  88. Suwa M, Egashira T, Nakano H, Sasaki H, Kumagai S (2006) Metformin increases the PGC-1 alpha protein and oxidative enzyme activities possibly via AMPK phosphorylation in skeletal muscle in vivo. J Appl Physiol 101:1685–1692Google Scholar
  89. Taylor CT, Moncada S (2010) Nitric oxide, cytochrome c oxidase, and the cellular response to hypoxia, Arteriosclerosis, Thrombosis. Vascul Biol 30:643–647Google Scholar
  90. Thomson DM, Fick CA, Gordon SE (2008) AMPK activation attenuates S6K1, 4E-BP1, and eEF2 signaling responses to high-frequency electrically stimulated skeletal muscle contractions. J Appl Physiol 104:625–632Google Scholar
  91. Timmers S, Konings E, Bilet L, Houkooper RH, van der Weijer T, Goossens GH, Hoeks J, van der Krieken S, Ryu D, Kersten S, Moonen-Kornips E, Hesselink MK, Kunz I, Schrauwen-Hinderling VB, Blaak EE, Auwerx J, Schrauwen P (2011) Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metabol 14:612–622Google Scholar
  92. Ulgherait M, Rana A, Rera M, Graniel J, Walker DW (2014) AMPK modulates tissue and organismal aging in a non-cell-autonomous manner. Cell Rep 8:1767–1780Google Scholar
  93. Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Müller F (2003) Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 426:620Google Scholar
  94. Vera E, Bernardes de Jesus B, Foronda M, Flores JM, Blasco MA (2013) Telomerase reverse transcriptase synergizes with calorie restriction to increase health span and extend mouse longevity. PLoS One 8:e53760Google Scholar
  95. Walker G, Houthoofd K, Vanfleteran JR, Gems D (2005) Dietary restriction in C. elegans: from rate-of-living effects to nutrient sensing pathways. Mechanism Age Develop 126:929–937Google Scholar
  96. Wang DT, Zeng QP (2014) Modulation of yeast transporter gene expression and lipid metabolism by hormesis mimicking calorie restriction. Microbiol China 41:2012–2021Google Scholar
  97. Wang DT, Wu M, Li SM, Gao Q, Zeng QP (2014) Artemisinin mimics calorie restriction to initiate antioxidative responses and compromise telomere shortening. PeerJ PrePrints 2:e565v1Google Scholar
  98. Wang DT, Wu M, Li SM, Gao Q, Zeng QP (2015a) Artemisinin mimics calorie restriction to extend yeast lifespan via a dual-phase mode: a conclusion drawn from global transcriptome profiling. Sci China Life Sci 57:1–15Google Scholar
  99. Wang DT, He J, Wu M, Li SM, Gao Q, Zeng QP (2015b) Artemisinin mimics calorie restriction to trigger mitochondrial biogenesis and compromise telomere shortening in mice. Peer J 3:e822Google Scholar
  100. Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471–484Google Scholar
  101. Yang W, Hekimi S (2010) A mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegans. PLoS Biol 8:e1000556Google Scholar
  102. Youngman LD, Park JY, Ames BN (1992) Protein oxidation associated with aging is reduced by dietary restriction of protein or calories. Proc Natl Acad Sci USA 89:9112–9116Google Scholar
  103. Zeng QP, Zhang PZ (2011) Artesunate mitigates proliferation of tumor cells by alkylating heme-harboring nitric oxide synthase. Nitric Oxide 24:110–112Google Scholar
  104. Zeng QP, Xiao N, Wu P, Yang XQ, Zeng LX, Guo XX, Zhang PZ, Qiu F (2011) Artesunate potentiates antibiotics by inactivating bacterial heme-harbouring nitric oxide synthase and catalase. BMC Res Notes 4:223Google Scholar
  105. Zhang S, Gerhard GS (2009) Heme mediates cytotoxicity from artemisinin and serves as a general anti-proliferation target. PLoS One 4:e7472Google Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Tropical Medicine InstituteGuangzhou University of Chinese MedicineGuangzhouChina

Personalised recommendations