ART for Anti-inflammation

  • Qing-Ping ZengEmail author
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)


Chronic/acute synovitis, an early phase of RA, can be experimentally induced in mice by autoantigen/bacterial antigen challenging and live bacterial feeding. While a donor of NO replicates the modeling of synovitis, an inhibitor of NOS blocks the progression of synovitis, suggesting inflammation-triggered NO burst represents an etiological cause of synovitis. ART, via inhibiting iNOS, can ameliorate the synovial inflammation by mitigating NO-driven hypoxia, angiogenesis, and hyperplasia.


ART Antigen Bacteria NO Synovitis 


  1. Abramson SB (2004) Inflammation in osteoarthritis. J Rheumatol 70:70–76Google Scholar
  2. An JY, Kim KM, Choi MG, Noh JH, Sohn TS, Bae JM, Kim S (2009) Prognostic role of p-mTOR expression in cancer tissues and metastatic lymph nodes in p T2b gastric cancer. Int J Cancer 126:2904–2913Google Scholar
  3. Bakker AD, da Silva VC, Krishna R, Bacabac RG, Blaauboer ME, Lin YC, Marcantonio RA, Cirelli JA, Klein-Nulend J (2009) Tumor necrosis factor α and interleukin-1β modulate calcium and nitric oxide signaling in mechanically stimulated osteocytes. Arthritis Rheum 60:3336–3345CrossRefGoogle Scholar
  4. Biniecka M, Kennedy A, Ng CT, Chang TC, Balogh E, Fox E, Veale DJ, Fearon U, O’Sulliban JN (2011) Successful tumour necrosis factor (TNF) blocking therapy suppresses oxidative stress and hypoxia-induced mitochondrial mutagenesis in inflammatory arthritis. Arthritis Res Ther 13:R121CrossRefGoogle Scholar
  5. Cannon GW, Openshaw SJ, Hibbs JB Jr, Hoidal JR, Huecksteadt TP, Griffiths MM (1996) NO production during adjuvant-induced and collagen-induced arthritis. Arthritis Rheum 39:1677–1684CrossRefGoogle Scholar
  6. Cejka D, Hayer S, Niederreiter B, Sieghart W, Fuereder T, Zwerina J, Schett G (2010) Mammalian target of rapamycin signaling is crucial for joint destruction in experimental arthritis and is activated in osteoclasts from patients with rheumatoid arthritis. Arthritis Rheum 62:2294–2302CrossRefGoogle Scholar
  7. Chou LW, Wang J, Chang PL, Hsieh YL (2011) Hyaluronan modulates accumulation of hypoxia-inducible factor-1 alpha, inducible NOS, and matrix metalloproteinase-3 in the synovium of rat adjuvant-induced arthritis model. Arthritis Res Ther 13:R90CrossRefGoogle Scholar
  8. Cillero-Pastor B, Martin MA, Arenas J, Lopez-Armada MJ, Blanco FJ (2011) Effect of nitric oxide on mitochondrial activity of human synovial cells. BMC Musculoskelet Disord 12:4CrossRefGoogle Scholar
  9. Courtenay JS, Dallman MJ, Dayan AD, Martin A, Mosedale B (1980) Immunisation against heterologous type II collagen induces arthritis in mice. Nature 283:666–668CrossRefGoogle Scholar
  10. Cua DJ, Sherlock JP (2011) Gut microbiota strikes ‘‘back’’. Nat Med 17:1055–1056CrossRefGoogle Scholar
  11. Du JH, Zhang HD, Ma ZJ, Ji KM (2010) Artesunate induces oncosis-like cell death in vitro and has antitumor activity against pancreatic cancer xenografts in vivo. Cancer Chemother Pharmacol 65:895–902CrossRefGoogle Scholar
  12. Eckmann L, Kagnoff MF (2005) Intestinal mucosal responses to microbial infection. Springer Semin Immun 27:181–196CrossRefGoogle Scholar
  13. Efferth T, Dunstan H, Sauerbrey A, Miyachi H, Chitambar CR (2001) The anti-malarial artemisinin is also active against cancer. Int J Oncol 18:767–773Google Scholar
  14. Efferth T, Sauerbrey A, Olbrich A, Gebhart E, Rauch P, Weber HO, Hengstler JG, Halatsch ME, Volm M, Tew KD, Ross DD, Funk JO (2003) Molecular modes of action of artemisinin in tumor cell lines. Mol Pharmacol 64:382–394CrossRefGoogle Scholar
  15. Farrell AJ, Blake DR, Palmar RMJ (1992) Increased concentrations of nitrite in synovial fluid and serum samples suggest increased NO synthesis in rheumatic diseases. Ann Rheum Dis 51:1219–1222CrossRefGoogle Scholar
  16. Fermor B, Christensen SE, Youn I, Cernanec JM, Davies CM, Weinberg JB (2007) Oxygen, nitric oxide and articular cartilage. Euro Cell Mat 13:56–65Google Scholar
  17. Glantschnig H, Fisher JE, Wesolowski G, Rodan GA, Reszka AA (2003) M-CSF, TNFα and RANK ligand promote osteoclasts survival by signaling through mTOR/S6 kinase. Cell Death Differ 10:1165–1177CrossRefGoogle Scholar
  18. Han TH, Qamirani E, Nelson AG, Hyduke DR, Chaudhuri G, Kuo L, Liao JC (2003) Regulation of nitric oxide consumption by hypoxic red blood cells. Proc Natl Acad Sci USA 100:12504–12509CrossRefGoogle Scholar
  19. He Y, Fan J, Lin H, Yang X, Ye Y, Liang L, Zhan Z, Dong X, Sun L, Xu H (2009) The anti-malaria agent artemisinin inhibits expression of vascular endothelial growth factor and hypoxia inducible factor 1 alpha in human rheumatoid arthritis fibroblast-like synoviocyte. Rheumatol Int 31:53–60CrossRefGoogle Scholar
  20. Hess G, Herbrecht R, Romaguera J, Verhoef G, Crump M, Gisselbrecht C, Laurell A, Offner F, Strahs A, Berkenblit A, Hanushevsky O, Clancy J, Hewes B, Moore L, Coiffier B (2009) Phase III study to evaluate temsirolimus compared with investigator’s choice therapy for the treatment of relapsed or refractory mantle cell lymphoma. J Clin Oncol 27:3822–3829CrossRefGoogle Scholar
  21. Hultqvist M, Olofsson P, Gelderman KA, Holmberg J, Holmdahl R (2006) A new arthritis therapy with oxidative burst inducers. PLoS Med 3:e348CrossRefGoogle Scholar
  22. Humby F, Bombardieri M, Manzo A, Kelly S, Blades MC, Kirkham B, Spencer J, Pitzalis C (2009) Ectopic lymphoid structures support ongoing production of class-switched autoantibodies in rheumatoid synovium. PLoS Med 6:e1CrossRefGoogle Scholar
  23. Kasuno K, Takabuchi S, Fukuda K, Kizaka-Kondoh S, Yodoi J, Adachi T, Semenza GL, Hirota K (2004) Nitric oxide induces hypoxia-inducible factor 1 activation that is dependent on MAPK and phosphatidylinositol 3-kinase signaling. J Biol Chem 279:2550–2558Google Scholar
  24. Kelly D, Delday MI, Mulder I (2012) Microbes and microbial effector molecules in treatment of inflammatory disorders. Immunol Rev 245:27–44CrossRefGoogle Scholar
  25. Kennedy A, Ng CT, Biniecka M, Saber T, Taylor C, O’Sullivan J, Veale DJ, Fearon U (2010) Angiogenesis and blood vessel stability in inflammatory arthritis. Arthritis Rheum 62:711–721CrossRefGoogle Scholar
  26. Keunen O, Johansson M, Oudin A, Sanzey M, Abdul Rahim SA, Fack F, Thorsen F, Taxt T, Bartos M, Jirik R, Miletic H, Wang J, Stieber D, Stuhr L, Moen I, Rygh CB, Bjerkvig R, Niclou SP (2011) Anti-vascular endothelial growth factor treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc Natl Acad Sci USA 108:3749–3754CrossRefGoogle Scholar
  27. Kneissel M, Luong-Nguyen NH, Baptist M, Cortesi R, Zumstein-Mecker S, Kossida S, O’Reilly T, Lane H, Susa M (2004) Everolimus suppresses cancellous bone loss, bone resorption, and cathepsin K expression by osteoclasts. Bone 35:1144–1156CrossRefGoogle Scholar
  28. Lala PK, Chakraborty C (2001) Role of nitric oxide in carcinogenesis and tumour progression. Lancet Oncol 2:149–156CrossRefGoogle Scholar
  29. Laragione T, Gulko PS (2010) mTOR regulates the invasive properties of synovial fibroblasts in rheumatoid arthritis. Mol Med 16:352–358CrossRefGoogle Scholar
  30. Luross JA, Williams NA (2001) The genetic and immunopathological processes underlying collagen-induced arthritis. Immunology 103:407–416CrossRefGoogle Scholar
  31. Maxwell JR, Gowers IR, Moore DJ, Wilson AG (2010) Alcohol consumption is inversely associated with risk and severity of rheumatoid arthritis. Rheumatology 42:508–514Google Scholar
  32. McDevitt H (2000) A new model for rheumatoid arthritis? Arthritis Res 2:85–89CrossRefGoogle Scholar
  33. Moran EM, Heydrich R, Ng CT, Saber TP, McCormick J, Sieper J, Appel H, Fearon U, Veale DJ (2011) IL-17A expression is localised to both mononuclear and polymorphonuclear synovial cell infiltrates. PLoS ONE 6:e24048CrossRefGoogle Scholar
  34. Motzer RJ, Escudier B, Oudard S, Hutson TE, Porta C, Bracarda S, Grünwald V, Thompson JA, Figlin RA, Hollaender N, Urbanowitz G, Berg WJ, Kay A, Lebwohl D, Ravaud A; RECORD-1 Study Group. (2008) Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 372:449-456Google Scholar
  35. Muntan J, De la Mat M (2010) Nitric oxide and cancer. World J Hepatol 2:337–344CrossRefGoogle Scholar
  36. Nagy G, Clark JM, Buzas E, Gorman C, Cope AP (2007) Nitric oxide, chronic inflammation and autoimmunity. Immunol Lett 111:1–5CrossRefGoogle Scholar
  37. Nagy G, Clark JM, Buzas E, Gorman C, Pasztoi M, Koncz A, Falus A, Cope AP (2008) Nitric oxide production of T lymphocytes is increased in rheumatoid arthritis. Immunol Lett 118:55–58CrossRefGoogle Scholar
  38. Nagy G, Koncz A, Telarico T, Fernandez D, Ersek B, Buzas E, Perl A (2010) Central role of NO in the pathogenesis of rheumatoid arthritis and systemic lupus erythematosus. Arthritis Res Ther 12:210CrossRefGoogle Scholar
  39. Natarajan R, Fisher BJ, Fowler AA III (2003) Regulation of hypoxia inducible factor-1 by nitric oxide in contrast to hypoxia in microvascular endothelium. FEBS Lett 549:99–104CrossRefGoogle Scholar
  40. Ng CT, Biniecka M, Kennedy A, McCornick J, FitzGerald O, Bresnihan B, Buggy D, Taylor CT, O’Sullivan J, Fearon U, Veale DJ (2010) Synovial tissue hypoxia and inflammatory inflammation in vivo. Ann Rheum Dis 69:1389–1395CrossRefGoogle Scholar
  41. Nisoli E, Carruba MO (2006) Nitric oxide and mitochondrial biogenesis. J Cell Sci 119:2855–2862CrossRefGoogle Scholar
  42. Olson N, van der Vliet A (2011) Interactions between nitric oxide and hypoxia inducible factor signaling pathways in inflammatory disease. Nitric Oxide 25:125–137CrossRefGoogle Scholar
  43. Pantuck AJ, Seligson DB, Klatte T, Yu H, Leppert JT, Moore L, O’Toole T, Gibbons J, Belldegrun AS, Figlin RA (2007) Prognostic relevance of the mTOR pathway in renal cell carcinoma: implications for molecular patient selection for targeted therapy. Cancer 109:2257–2267CrossRefGoogle Scholar
  44. Paquet J, Henrionnet C, Pinzano A, Vincourt JB, Gillet P, Netter P, Chary-Valckenaere I, Loeuille D, Pourel J, Grossin L (2011) Alternative for anti-tumor necrosis factor antibodies for arthritis treatment. Mol Ther 19:1887–1895CrossRefGoogle Scholar
  45. Perkins DJ, St Clair EW, Misukonis MA, Wenberg JB (1998) Reduction of NOS2 overexpression in rheumatoid arthritis patients treated with anti-tumor necrosis factor alpha monoclonal antibody (cA2). Arthritis Rheum 41:2205–2210CrossRefGoogle Scholar
  46. Rahman MM, McFadden G (2006) Modulation of tumor necrosis factor by microbial pathogens. PLoS Pathog 2:e4CrossRefGoogle Scholar
  47. Robert HC, Samir AK (2004) Chemistry, biological activity, and chemotherapeutic potential of betulinic acid for the prevention and treatment of cancer and HIV Infection. Med Res Rev 24:90–114CrossRefGoogle Scholar
  48. Saber T, Veale DJ, Balogh E, McCormick J, NicAnUltaigh S, Connolly M, Fearon U (2011) Toll-like receptor 2 induced angiogenesis and invasion is mediated through the Tie2 signalling pathway in rheumatoid arthritis. PLoS ONE 6:e23540CrossRefGoogle Scholar
  49. Schett G, Coates LC, Ash ZR, Finzel S, Conaghan PG (2011) Structural damage in rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis: traditional views, novel insights gained from tumor necrosis factor blockade, and concepts for the future. Arthritis Res Ther 13(Suppl 1):S4Google Scholar
  50. Sherbet G (2009) Bacterial infections and the pathogenesis of autoimmune conditions. Brit J Med Prac 2:6–13Google Scholar
  51. Smith HS (2011) Painful rheumatoid arthritis. Pain Physician 14:E427–E458Google Scholar
  52. Smolen JS, Aletaha D, Koeller M, Weisman MH, Emery P (2007) New therapies for treatment of rheumatoid arthritis. Lancet 370:1861–1874CrossRefGoogle Scholar
  53. Song XR, Shen JL, Wen HQ, Zhong ZR, Luo QL, Chu D, Qi Y, Xu Y, Wei W (2011) Impact of Schistosoma japonicum infection on collagen-induced arthritis in DBA/1 mice: A murine model of human rheumatoid arthritis. PLoS ONE 6:e23453CrossRefGoogle Scholar
  54. Tak PP, Kalden JR (2011) Advances in rheumatology: new targeted therapeutics. Arthritis Res Ther 13(Suppl 1):S5Google Scholar
  55. Tang W, Lu Y, Tian QY, Zhang Y, Guo FJ, Liu GY, Syed NM, Lai Y, Lin EA, Kong L, Su J, Yin F, Ding AH, Zanin-Zhorov A, Dustin ML, Tao J, Craft J, Yin Z, Feng JQ, Abramson SB, Yu XP, Liu CJ (2011) The growth factor progranulin binds to tumor necrosis factor receptors and is therapeutic against inflammatory arthritis in mice. Science 332:478–484CrossRefGoogle Scholar
  56. Teachey DT, Greiner R, Seif A, Attiyeh Bleesing J, Choi J, Manno C, Rappaport E, Schwabe D, Sheen C, Sullivan KE, Zhuang H, Wechsler DS, Grupp SA (2009) Treatment with sirolimus results in complete responses in patients with autoimmune lymphoproliferative syndrome. Brit J haematol 145:101–106CrossRefGoogle Scholar
  57. Toes REM, Huizinga TWJ (2009) Autoimmune response in the rheumatoid synovium. PLoS Med 6:e1000009CrossRefGoogle Scholar
  58. van Zonneveld AJ, de Boer HC, van der Veer EP, Rabelink TJ (2010) Inflammation, vascular injury and repair in rheumatoid arthritis. Ann Rheum Dis 69(Suppl I):i57–i60CrossRefGoogle Scholar
  59. Walsh LJ, Trinchieri G, Waldorf HA, Whitaker D, Murphy GF (1991) Human dermal mast cells contain and release tumor necrosis factor alpha, which induces endothelial leukocyte adhesion molecule 1. Proc Natl Acad Sci USA 88:4220–4224CrossRefGoogle Scholar
  60. Wang B, Ma L, Tao X, Lipsky PE (2004) Triptolide, an active component of the Chinese herbal remedy Tripterygium wilfordii Hook F, inhibits production of nitric oxide by decreasing inducible nitric oxide synthase gene transcription. Arthritis Rheum 50:2995–3003CrossRefGoogle Scholar
  61. Wang JX, Tang W, Zhou R, Wan J, Shi LP, Zhang Y, Yang YF, Li Y, Zuo JP (2008) The new water-soluble artemisinin derivative SM905 ameliorates collagen-induced arthritis by suppression of inflammatory and Th17 responses. British J Pharmacol 153:1303–1310CrossRefGoogle Scholar
  62. Wheeler MA, Smith SD, Garcia-Cardena G, Nathan CF, Weiss RM (1997) Bacterial infection induces NOS in human neutrophils. J Clin Invest 99:110–116CrossRefGoogle Scholar
  63. Wilder RL (2002) Integrin alpha V beta 3 as a target for treatment of rheumatoid arthritis and related rheumatic diseases. Ann Rheum Dis 61(Suppl II):ii96–ii99Google Scholar
  64. Witthoft T, Eckmann L, Kim JM, Kagnoff MF (1998) Enteroinvasive bacteria directly activate expression of inducible nitric oxide synthase and nitric oxide production in human colon epithelial cells. Am J Physiol 275:G564–G571Google Scholar
  65. Wu HJ, Ivanov II, Darce J, Hattori K, Shima T, Umesaki Y, Littman DR, Benoist C, Mathis D (2010) Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32:815–827CrossRefGoogle Scholar
  66. Wu P, Bao F, Zheng Q, Xiao N, Wang DT, Zeng QP (2012) Artemisinin and rapamycin compromise nitric oxide-driven and hypoxia-triggered acute articular synovitis in mice. Sci Sin Vitae 42:724–738Google Scholar
  67. Xu WM, Charles IG, Moncada S (2005) Nitric oxide: orchestrating hypoxia regulation through mitochondrial respiration and the endoplasmic reticulum stress response. Cell Res 15:63–65CrossRefGoogle Scholar
  68. Xu H, He X, Yang L, Liang L, Zhan Z, Ye Y, Yang X, Lian F, Sun L (2007) Anti-malarial agent artemisinin inhibits tumor necrosis factor-α-induced production of proinflammatory cytokines via inhibition of NF-κB and P13 kinase/Akt signal pathway in human rheumatoid arthritis fibroblast-like synoviocytes. Rheumatol 46:920–926CrossRefGoogle Scholar
  69. Yao JC, Shah MH, Ito T, Bohas CL, Wolin EM, Van Cutsem E, Hobday TJ, Okusaka T, Capdevila J, de Vries EG, Tomassetti P, Pavel ME, Hoosen S, Haas T, Lincy J, Lebwohl D, Öberg K; RAD001 in Advanced Neuroendocrine Tumors, Third Trial (RADIANT-3) Study Group. (2011) Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med 364:514–523Google Scholar
  70. Zhou HJ, Wang WQ, Wu GD, Lee J, Li A (2007) Artesunate inhibits angiogenesis and downregulates vascular endothelial growth factor expression in chronic myeloid leukemia K562 cells. Vascul Pharmacol 47:131–138CrossRefGoogle Scholar
  71. Zhou L, Huang Y, Li J, Wang Z (2010) The mTOR pathway is associated with the poor prognosis of human hepatocellular carcinoma. Med Oncol 27:255–261CrossRefGoogle Scholar
  72. Zuco V, Supino R, Righetti SC, Cleris L, Marchesi E, Gambacorti-Passerini C, Formelli F (2002) Selective cytotoxicity of betulinic acid on tumor cell lines, but not on normal cells. Cancer Lett 175:17–25CrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Tropical Medicine InstituteGuangzhou University of Chinese MedicineGuangzhouChina

Personalised recommendations