ART for Antitumor

  • Qing-Ping ZengEmail author
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)


ART acts on tumor cells differentially by the threshold concentrations. High-dose ART kills tumor cells upon the inhibition of NOS, whereas low-dose ART benefits tumor propagation due to induce cytoprotective NO production. Pro-oxidants that antagonize antioxidants can potentiate ART’s antitumor capacity. The combination of ART with pro-oxidants should provide an effective solution to the chemotherapy of multidrug resistant tumors.


ART NOS Pro-oxidants Chemotherapy Sensitization 


  1. Beekman AC, Wierenga PK, Woerdenbag HJ, Van Uden W, Pras N, Konings AWT, El-Feraly FS, Galal AM, Wikstrom HV (1998) Artemisinin-derived sesquiterpene lactones as potential anti-tumour compounds: cytotoxic action against bone marrow and tumour cells. Plant Med 64:615–619CrossRefGoogle Scholar
  2. Chinje EC, Stratford IJ (1991) Role of nitric oxide in growth of solid tumours: a balancing act. Essays Biochem 32:61–72Google Scholar
  3. Clark EP, Epp ER, Biaglow JE, Biaglow JE (1984) Glutathione depletion, radiosensitization, and misonidazole potentiation in hypoxic Chinese hamster ovary cells by buthionine sulfoximine. Radio Res 98:370CrossRefGoogle Scholar
  4. Corrie PG, Pippa G (2008) Cytotoxic chemotherapy: clinical aspects. Medicine 36:24–28CrossRefGoogle Scholar
  5. Efferth T (2005) Mechanistic perspectives for 1,2,4-trioxanes in anti-cancer therapy. Drug Resist Updates 8:85–97CrossRefGoogle Scholar
  6. Efferth T (2006) Molecular pharmacology and pharmacogenomics of artemisinin and its derivatives in cancer cells. Curr Drug Targ 7:407–421CrossRefGoogle Scholar
  7. Efferth T, Oesch F (2004) Oxidative stress response of tumor cells: microarray-based comparison between artemisinins and anthracyclines. Biochem Pharmacol 68:3–10CrossRefGoogle Scholar
  8. Efferth T, Briehl MM, Tome ME (2003) Role of antioxidant genes for the activity of artemisinin against tumor cells. Int J Oncol 23:1231–1235Google Scholar
  9. Gusarov I, Nudler E (2005) NO-mediated cytoprotection: instant adaptation to oxidative stress in bacteria. Proc Natl Acad Sci USA 102:13855–13860Google Scholar
  10. Gusarov I, Shatalin K, Starodubtseva M, Nudler E (2009) Endogenous NO protects bacteria against a wide spectrum of antibiotics. Science 325:1380–1384 CrossRefGoogle Scholar
  11. Jang TJ, Kim DK (2002) Inducible nitric oxide synthase expression of tumor and stromal cells is associated with the progression of 7,12-dimethylbenz[a]anthracene-induced rat mammary tumors. Cancer Lett 182:121–126Google Scholar
  12. Konkimalla VB, Blunder M, Korn B, Soomro SA, Jansen H, Chang W, Posner GH, Bauer R, Efferth T (2008) Effect of artemisinins and other endoperoxides on nitric oxide-related signaling pathway in RAW 264.7 mouse macrophage cells. Nitric Oxide 19:184–191CrossRefGoogle Scholar
  13. Krishna S, Bustamante L, Haynes RK, Staines HM (2008) Artemisinins: their growing importance in medicine. Trends Pharmacol Sci 29:520–527CrossRefGoogle Scholar
  14. Kwok JC, Richardson DR (2002) The iron metabolism of neoplastic cells: alterations that facilitate proliferation? Crit Rev Oncol Hemat 42:65–78Google Scholar
  15. Lai H, Singh NP (2001) Selective cancer cell cytotoxicity from exposure to dihydroartemisinin and holotransferrin. Life Sci 70:49CrossRefGoogle Scholar
  16. Lind MJ (2008) Principles of cytotoxic chemotherapy. Medicine 36:19–23CrossRefGoogle Scholar
  17. Meshnick SR, Tsang TW, Lin FB, Pan HZ, Chang CN, Kuypers F, Chiu D, Lubin B (1989) Activated oxygen mediates the antimalarial activity of qinghaosu. Prog Clin Biol Res 313:95Google Scholar
  18. Meshnick SR, Thomas A, Ranz A, Xu CM, Pan HZ (1991) Artemisinin (qinghaosu): the role of intracellular hemin in its mechanism of antimalarial action. Mol Biochem Parasit 49:181–189Google Scholar
  19. O’Neill PM, Barton VE, Ward SA (2010) The molecular mechanism of action of artemisinin—the debate continues. Molecules 15:1705–1721CrossRefGoogle Scholar
  20. Ridnour LA, Thomas DD, Donzelli S, Espey MG, Roberts DD, Wink DA, Isenberg JS (2006) The biphasic nature of nitric oxide responses in tumor biology. Antioxid Redox Signal 8:1329–1337Google Scholar
  21. Senok AC, Nelson EAS, Li K, Oppenheimer SJ (1997) Thalassaemia trait, red blood cell age and oxidant stress: effects on Plasmodium faciparum growth and sensitivity to artemisinin. Trans Soc Trop Med Hyg 91:585CrossRefGoogle Scholar
  22. Simizu S, Takada M, Umezawa K, Imoto M (1998) Requirement of caspase-3-(like) protease-mediated hydrogen peroxide production for apoptosis induced by various anticancer drugs. J Boil Chem 273:26900–26907CrossRefGoogle Scholar
  23. Uhlemann AC, Cameron A, Eckstein-Ludwig U, Fischbarg J, Iserovich P, Zuniga FA, East M, Lee A, Brady L, Haynes RK, Krishna S (2005) A single amino acid residue can determine the sensitivity of SERCAs to artemisinin. Nat Struct Mol Biol 12:628–629CrossRefGoogle Scholar
  24. Wink DA, Hanbauer I, Krishna MC, DeGraff W, Gamson J, Mitchell JB (1993) Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species. Proc Natl Acad Sci USA 90:9813–9817Google Scholar
  25. Wink DA, Cook JA, Pacelli R, Liebmann J, Krishna MC, Mitchell JB (1995) Nitric oxide (NO) protects against cellular damage by reactive oxygen species. Toxicol Lett 82–83:221-226Google Scholar
  26. Woerdenbag HJ, Moskal TA, Pras N, Malingre TM, Elferaly FS, Kampinga HH, Konings AWT (1993) Cytotoxicity of artemisinin-related endoperoxides to ehrlich ascites cancer-cells. J Nat Prod 56:849–856CrossRefGoogle Scholar
  27. Zhang SM, Gerhard GS (2009) Heme mediates cytotoxicity from artemisinin and serves as a general anti-proliferation target. PLoS ONE 4:7472CrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Tropical Medicine InstituteGuangzhou University of Chinese MedicineGuangzhouChina

Personalised recommendations