NO and ART

  • Qing-Ping ZengEmail author
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)


NO, mainly synthesized by NOS, is a signal transducer that conveys internal and external stimulations. The isoform of eNOS/nNOS is responsible for stable NO production, while the isoform of iNOS can be induced by proinflammatory cytokines for NO burst. Bacteria also synthesize NO by their own bNOS. ART exerts distinct roles in a dose-dependent manner. Low-dose ART induces and activates eNOS/nNOS, whereas high-dose ART inactivates all isoforms of NOS. ART can also mimic NO to upregulate COX for evoking mitochondrial uncoupling and biogenesis.


ART Dose-dependent effects COX NO NOS 


  1. Abu Bakar N, Klonis N, Hanssen E, Chan C, Tilley L (2010) Digestive-vacuole genesis and endocytic processes in the early intraerythrocytic stages of Plasmodium falciparum. J Cell Sci 123:441–450CrossRefGoogle Scholar
  2. Acton N, Klayman DL (1985) Artemisitene: a new sesquiterpene lactone endoperoxide from Artemisia annua. Plant Med 5:441–442CrossRefGoogle Scholar
  3. Agapie T, Suseno S, Woodward JJ, Stoll S, Britt RD, Marletta MA (2009) Nitric oxide formation by a catalytically self-sufficient bacterial nitric oxide synthase from Sorangium cellulosum. Proc Natl Acad Sci USA 106:16221–16226CrossRefGoogle Scholar
  4. Balsa E, Marco R, Perales-Clemente E, Szklarczyk R, Calvo E, Landázuri MO, Enríquez JA (2012) NDUFA4 is a subunit of complex IV of the mammalian electron transport chain. Cell Metab 16:378–386 CrossRefGoogle Scholar
  5. Bao F, Wu P, Xiao N, Qiu F, Zeng QP (2012) Nitric oxide-driven hypoxia initiates synovial angiogenesis, hyperplasia and inflammatory lesions in mice. PLoS ONE 7:e34494Google Scholar
  6. Beekman AC, Barentsen ARW, Woerdenbag HJ, van Uden W, Pras N, El-Feraly FS, Galal AM (1997) Stereochemistry-dependent cytotoxicity of some artemisinin derivatives. J Nat Prod 60:325–327CrossRefGoogle Scholar
  7. Beekman AC, Wierenga P, Woerdenbag HJ, van Uden W, Pras N, Konings A, El-Feraly FS, Galal AM, Wikstrom HV (1998) TI: artemisinin-derived sesquiterpene lactones as potential antitumour compounds: cytotoxic action against bone marrow and tumour cells. Plant Med 64:615–619CrossRefGoogle Scholar
  8. Bousejra-El GF, Claparols C, Benoit-Vical F, Meunier B, Robert A (2008) The antimalarial trioxaquine DU1301 alkylates heme in malaria-infected mice. Antimicrob Agents Chemother 52:2966–2969CrossRefGoogle Scholar
  9. Boveris A, Carreras MC, Poderoso JJ (2010) The regulation of cell energetics and mitochondrial signaling by nitric oxide. In: Ignarro LJ (ed) Nitric oxide: biology and pathobiology, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  10. Brooks PS, Kraus DW, Shiva S, Doeller JE, Barone MC, Patel RP, Lancaster JRJ, Darley-Usmar V (2003) Control of mitochondrial respiration by nitric oxide, effects of low oxygen and respiratory state. J Biol Chem 278:31603–31609CrossRefGoogle Scholar
  11. Brown GC, Cooper CE (1994) Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS Lett 356:295-298Google Scholar
  12. Buddi R, Lin B, Atilano SR, Zorapapel NC, Kenney MC, Brown DJ (2002) Evidence of oxidative stress in human corneal diseases. J Histochem Cytochem 50:341–351CrossRefGoogle Scholar
  13. Cabello CM, Lamore SD, Bair WB 3rd, Qiao S, Azimian S, Lesson JL, Wondrak GT (2011) The redox antimalarial dihydroartemisinin targets human metastatic melanoma cells but not primary melanocytes with induction of NOXA-dependent apoptosis. Invest New Drugs 30:1289–1301CrossRefGoogle Scholar
  14. Castello PR, David PS, McClure T, Crook Z, Payton RO (2006) Mitochondrial cytochrome c oxidase produces nitric oxide under hypoxic conditions: implications for oxygen sensing and hypoxic signaling in eukaryotes. Cell Metabol 3:277–287CrossRefGoogle Scholar
  15. Cazelles J, Robert A, Meunier B (2001) Alkylation of heme by artemisinin, an antimalarial drug. Comptes Rendus De L Academie Des Sciences Serie Ii Fascicule C-Chimie 4:85–89Google Scholar
  16. Chen ZT, Huang ZY, Wu LY, Zeng QP (2000) Artemisinin-mediated apoptosis in hepatoma cells. Chin J Integr Trad West Med Liver Dis 10:23–25Google Scholar
  17. Chen Z, Foster MW, Zhang J, Mao L, Rockman HA, Kawamoto T, Kitagawa K, Nakayama K, Hess DT, Stamler JS (2005) An essential role for mitochondrial aldehyde dehydrogenase in nitroglycerin bioactivation. Proc Natl Acad Sci USA 102:12159–12164CrossRefGoogle Scholar
  18. Cleeter MW, Cooper JM, Darley-Usmar VM, Moncada S, Schapira AH (1994) Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, bynitric oxide. Implications for neurodegenerative diseases. FEBS Lett 345:50-54Google Scholar
  19. Corker H, Poole RK (2003) Nitric oxide formation by Escherichia coli: dependence on nitrite reductase, the nitric oxide-sensing regulator Fnr, and flavohemoglobin Hmp. J Biol Chem 278:31584–31592CrossRefGoogle Scholar
  20. Corpas FJ, Barroso JB, Del Rio LA (2004) Enzymatic sources of nitric oxide in plant cells—beyond one protein–one function. New Phytol 162:246–247CrossRefGoogle Scholar
  21. Creek DJ, Charman WN, Chiu FCK, Prankerd RJ, Dong Y, Vennerstrom JL, Charman SA (2008) Relationship between antimalarial activity and heme alkylation. Antimicrob Agents Chemother 52:1291–1296CrossRefGoogle Scholar
  22. de Luca C, Olefsky JM (2008) Inflammation and insulin resistance. FEBS Lett 582:97–105CrossRefGoogle Scholar
  23. del Pilar Crespo M, Avery TD, Hanssen E, Fox E, Robindon TV, Valente P, Taylor DK, Tilley L (2008) Artemisinin and a series of novel endoperoxide antimalarials exert early effects on digestive vacuole morphology. Antimicrob Agents Chemother 52:98–109CrossRefGoogle Scholar
  24. Elfering SL, Sarkela TM, Giulivi C (2002) Biochemistry of mitochondrial nitric-oxide synthase. J Biol Chem 277:38079–38086CrossRefGoogle Scholar
  25. Feng LL, Yang RY, Yang XQ, Zeng XM, Lu WJ, Zeng QP (2009) Synergistic re-channeling of mevalonate pathway for artemisinin overproduction in transgenic Artemisia annua. Plant Sci 177:57–67CrossRefGoogle Scholar
  26. Finocchietto P, Barreyro F, Holod S, Peralta J, Franco MC, Mendez C, Converso DP, Estevez A, Carreras MC, Poderoso JJ (2008) Control of muscle mitochondria by insulin entails activation of Akt2-mtNOS pathway: Implications for the metabolic syndrome. PLoS ONE 3:e1749CrossRefGoogle Scholar
  27. Ginsburg H, Atamna H (1994) The redox status of malaria-infected erythrocytes: an overview with an emphasis on unresolved problems. Parasite 1:5–13CrossRefGoogle Scholar
  28. Green SJ, Mellouk S, Hoffman SL, Meltzer MS, Nacy CA (1990) Cellular mechanisms of nonspecific immunity to intracellular infection: cytokine-induced synthesis of toxic nitrogen oxides from L-arginine by macrophages and hepatocytes. Immunol Lett 25:15–19CrossRefGoogle Scholar
  29. Green SJ, Scheller LF, Marletta MA, Seguin MC, Klotz FW, Slayter M, Nelson BJ, Nacy CA (1994) Nitric oxide: cytokine-regulation of nitric oxide in host resistance to intracellular pathogens. Immunol Lett 43:87–94CrossRefGoogle Scholar
  30. Guo XX, Yang XQ, Yang RY, Zeng QP (2010) Salicylic acid and methyl jasmonate but not Rose Bengal up-regulate artemisinin biosynthetic genes through invoking burst of endogenous singlet oxygen. Plant Sci 178:390–397CrossRefGoogle Scholar
  31. Gusarov I, Starodubtseva M, Wang ZQ, McQuade L, Lippard SJ, Stuehr DJ, Nudler E (2008) Bacterial nitric-oxide synthases operate without a dedicated redox partner. J Biol Chem 283:13140–13147CrossRefGoogle Scholar
  32. He J, Gao Q, Liao T, Zeng QP (2015) An ecological implication of glandular trichome-sequestered artemisinin: as a sink of biotic/abiotic stress-triggered singlet oxygen. Peer J PrePrints 3:e1026CrossRefGoogle Scholar
  33. Hobbs AJ, Stasch J-P (2010) Soluble GC: allosteric activation and redox regulation. In: Ignarro LJ (ed) NO: biology and pathobiology, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  34. Hou J, Wang D, Zhang R, Wang H (2008) Experimental therapy of hepatoma with artemisinin and its derivatives: in vitro and in vivo activity, chemosensitization, and mechanisms of action. Clin Cancer Res 14:5519–5530CrossRefGoogle Scholar
  35. Jung M (1997) Synthesis and cytotoxicity of novel artemisinin analogs. Bioorg Med Chem Lett 7:1091–1094CrossRefGoogle Scholar
  36. Knowles RG, Moncada S (1994) Nitric oxide synthases in mammals. Biochem J 298:249–258Google Scholar
  37. Krudsood S, Looareesuwan S, Tangpukdee N, Wilairatana P, Phumratanaprapin W, Leowattana W, Chalermrut K, Ramanathan S, Navaranam V, Olliaro P, Vaillant M, Kiechel JR, Taylor WRJ (2010) New fixed-dose artemisinin-mefloquine formulation against multidrug-resistant Plasmodium falciparum in adults: a comparative phase IIb safety and pharmacokinetic study with standard-dose nonfixed artemisinin plus mefloquine. Antimicrob Agents Chemother 54:3730–3737CrossRefGoogle Scholar
  38. Lawson DM, Stevenson CE, Andrew CR, Eady RR (2000) Unprecedented proximal binding of NO to heme: implications for GC. EMBO J 19:5661–5671CrossRefGoogle Scholar
  39. Li Y (2007) Discovery and development of new antimalarial drug Qinghaosu (artemisinin). Shanghai Scientific & Technical Publishers, ShanghaiGoogle Scholar
  40. Li W, Mo W, Shen D, Sun L, Wang J, Lu S, Gitschier JM, Zhou B (2005) Yeast model uncovers dual roles of mitochondria in the action of artemisinin. PLoS Genet 1:e36CrossRefGoogle Scholar
  41. Lin L, Park S, Lakatta EG (2009) RAGE signaling in inflammation and arterial aging. Front Biosci 14:1403–1413CrossRefGoogle Scholar
  42. Liu Q, Gross SS (1996) Binding sites of nitric oxide synthases. Meth Enzymol 268:311–324Google Scholar
  43. Liu JM, Ni MY, Fan JF, Tu YY, Wu ZH, Wu YL, Chou WS (1979) Structure and reaction of arteannuin. Acta Chim Sin 37:129–143Google Scholar
  44. Mason MG, Nicholls P, Wilson MT, Cooper CE (2006) Nitric oxide inhibition of respiration involves both competitive (heme) and noncompetitive (copper) binding to cytochrome c oxidase. Proc Natl Acad Sci USA 103:708–713CrossRefGoogle Scholar
  45. Meshnick SR, Thomas A, Ran A, Xy CM, Pan HZ (1991) Artemisinin (qinghaosu): the role of intracellular hemin in its mechanism of antimalarial action. Mol Biochem Parasitol 49:181–189CrossRefGoogle Scholar
  46. Meshnick SR, Yang YZ, Lima V, Kuypers F, Kamchonwongpaisan S, Yuthavong Y (1993) Iron-dependent free radical generation from the antimalarial agent artemisinin (qinghaosu). Antimicrob Agents Chemother 37:1108–1114CrossRefGoogle Scholar
  47. Meshnick SR, Little B, Yang YZ (1994) Alkylation of proteins by artemisinin. Biochem Pharm 48:569–573Google Scholar
  48. Mohiuddin I, Chai H, Lin PH, Lumsden AB, Yao Q, Chen C (2006) Nitrotyrosine and chlorotyrosine: clinical significance and biological functions in the vascular system. J Surg Res 133:143–149CrossRefGoogle Scholar
  49. O’Neill PM, Barton VE, Ward SA (2010) The molecular mechanism of action of artemisinin—the debate continues. Molecules 15:1705–1721CrossRefGoogle Scholar
  50. Pacher P, Obrosova IG, Mabley JG, Szabó C (2005) Role of nitrosative stress and peroxynitrite in the pathogenesis of diabetic complications. Emerging new therapeutical strategies. Curr Med Chem 12:267–275CrossRefGoogle Scholar
  51. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315CrossRefGoogle Scholar
  52. Pandey AV, Tekwani BL, Singh RL, Chauhan VS (1999) Artemisinin, an endoperoxide antimalarial, disrupts the hemoglobin catabolism and heme detoxification systems in malarial parasite. J Biol Chem 274:19383–19388CrossRefGoogle Scholar
  53. Price R, van Vugt M, Phaipun L, Luxemburger C, Simpson J, McGready R, ter Kuile F, Kham A, Chongsuphajaisiddhi T, White NJ, Nosten F (1999) Adverse effects in patients with acute falciparum malaria treated with artemisinin derivatives. Am J Trop Med Hyg 60:547–555Google Scholar
  54. Rhoades RA, Tanner GA (2003) Medical physiology, 2nd edn. Lippincott, Williams & Wilkins, AmblerGoogle Scholar
  55. Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MCY, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943CrossRefGoogle Scholar
  56. Robert A, Benoit-Vical FO, Claparols C, Meunier B (2005) The antimalarial drug artemisinin alkylates heme in infected mice. Proc Natl Acad Sci USA 102:13676–13680CrossRefGoogle Scholar
  57. Romero MR, Efferth T, Serrano MA, Castano B, Macias RI, Briz O, Marin JJ (2005) Effect of artemisinin/artesunate as inhibitors of hepatitis B virus production in an in vitro replicative system. Antiviral Res 68:75–83CrossRefGoogle Scholar
  58. Roszer T (2012) The biology of subcellular nitric oxide. Springer, DordrechtCrossRefGoogle Scholar
  59. Roth RJ, Acton NA (1989) The isolation of Sesquiterpenes from Artemisia annua. J Chem Educ 66:349CrossRefGoogle Scholar
  60. Tay YM, Lim KS, Sheu FS, Jenner A, Whiteman M, Wong KP, Halliwell B (2004) Do mitochondria make nitric oxide? no? Free Radic Res 38:591–599CrossRefGoogle Scholar
  61. Taylor WR, White NJ (2004) Antimalarial drug toxicity: a review. Drug Saf 27:25–61CrossRefGoogle Scholar
  62. Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1995) Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 A. Science 269:1069–1074CrossRefGoogle Scholar
  63. van Faassen E, Vanin A (2004) Nitric oxide. In: Encyclopedia for analytical science, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  64. van Faassen E, Vanin A (2007) Radicals for life: the various forms of nitric oxide. Elsevier, AmsterdamGoogle Scholar
  65. van Herpen TW, Cankar K, Nogueira M, Bosch D, Bouwmeester HJ, Beekwilder J (2010) Nicotiana benthamiana as a production platform for artemisinin precursors. PLoS ONE 5:e14222CrossRefGoogle Scholar
  66. van Wonderen JH, Burlat B, Richardson DJ, Cheesman MR, Butt JN (2008) The nitric oxide reductase activity of cytochrome c nitrite reductase from Escherichia coli. J Biol Chem 283:9587–9594CrossRefGoogle Scholar
  67. Wang H, Yan B, Luo D (1998) Study on anti-arrhythmia activity of artemisinin. Chin Pharmacol Bull 14:94Google Scholar
  68. Wang J, Huang L, Li J, Fan Q, Long Y, Li Y, Zhou B (2010) Artemisinin directly targets malarial mitochondria through its specific mitochondrial activation. PLoS One: e9582Google Scholar
  69. Webb DJ, Freestone S, Allen MJ, Muirhead GJ (1999) Sildenafil citrate and blood-pressure-lowering drugs: results of drug interaction studies with an organic nitrate and a calcium antagonist. Am J Cardiol 83:21C–28CCrossRefGoogle Scholar
  70. Webb AJ, Patel N, Loukogeorgakis S, Okorie M, Aboud Z, Misra S, Rashid R, Miall P, Deanfield J, Benjamin N, MacAllister R, Hobbs AJ, Ahluwalia A (2008) Acute blood pressure lowering, vasoprotective, and antiplatelet properties of dietary nitrate via bioconversion to nitrite. Hypertension 51:784–790CrossRefGoogle Scholar
  71. Wellen KE, Hotamisligil GS (2005) Inflammation, stress, and diabetes. J Clin Invest 115:1111–1119CrossRefGoogle Scholar
  72. WHO (2001) Antimalarial drug combination therapy. Report of a WHO technical consultation. WHO/CDS/RBM/2001/35, reiterated in 2003Google Scholar
  73. WHO (2003) International pharmacopoeia, 3rd edn, vol 5, GenevaGoogle Scholar
  74. WHO (2005) WHO model list of essential medicines, 14th edn. Revised Mar 2005, GenevaGoogle Scholar
  75. Woerdenbag HJ, Pras N, Nguyen GC, Bui TB, Bos R, Van Uden W, Pham VY, Nguyen VB, Batterman S, Lugt CB (1994) Artemisinin, related sesquiterpenes, and essential oil in Artemisia annua during a vegetation period in Vietnam. Plant Med 60:272–275CrossRefGoogle Scholar
  76. Wolin MS, Wood KS, Ignarro LJ (1982) Gualylate cyclase from bovine lung. A kinetic analysis of the regulation of the purified soluble enzyme by protoporphyrin IX, heme, and nitrosyl-heme. J Biol Chem 257:13312–13320Google Scholar
  77. Wu P, Bao F, Zheng Q, Xiao N, Wang DT, Zeng QP (2012) Artemisinin and rapamycin compromise nitric oxide-driven and hypoxia-triggered acute articular synovitis in mice. Sci Sin Vitae 42:724-738Google Scholar
  78. Xiao SH (2005) Development of antischistosomal drugs in China, with particular consideration to praziquantel and the artemisinins. Acta Trop 96:153–167CrossRefGoogle Scholar
  79. Yang RY, Feng LL, Yang XQ, Yin LL, Xu XL, Zeng QP (2008) Quantitative transcript profiling reveals downregulation of a sterol pathway relevant gene and overexpression of artemisinin biogenetic genes in transgenic Artemisia annua plants. Planta Med 74:1510–1516CrossRefGoogle Scholar
  80. Yang RY, Zeng XM, Lu YY, Lu WJ, Feng LL, Yang XQ, Zeng QP (2010) Senescent leaves of Artemisia annua are the most active organs for over-expression of artemisinin biosynthesis responsible genes upon burst of singlet oxygen. Planta Med 76:734–742CrossRefGoogle Scholar
  81. Zeng QP, Qiu F, Yuan L (2008a) Production of artemisinin by genetically modified microbes. Biotechnol Lett 30:581–592CrossRefGoogle Scholar
  82. Zeng QP, Zhao C, Yin LL, Yang RY, Zeng XM, Huang Y, Feng LL, Yang XQ (2008b) Cloning of artemisinin biosynthetic cDNAs and novel ESTs and quantification of low temperature-induced gene overexpression. Sci China Ser C 51:232–244CrossRefGoogle Scholar
  83. Zeng QP, Zeng XM, Feng LL, Yin LL, Yang XQ, Yang RY (2009) Quantification of three key enzymes involved in artemisinin biosynthesis in Artemisia annua by polyclonal antisera-based ELISA. Plant Mol Biol Rep 27:50–57CrossRefGoogle Scholar
  84. Zeng QP, Zeng XM, Yang RY, Yang XQ (2011) Singlet oxygen as a candidate retrograde signaling transducer for modulating artemisinin biosynthetic genes in Artemisia annua. Biol Plant 55:669–674CrossRefGoogle Scholar
  85. Zeng QP, Zeng LX, Lu WJ, Feng LL, Yang RY, Qiu F (2012) Enhanced artemisinin production from engineered yeast precursors upon biotransformation. Biocat Biotrans 30:190–202CrossRefGoogle Scholar
  86. Zhang JF (2007) Late report: record of Project 523 and the research and development of Qinghaosu. Yangcheng Evening News PublisherGoogle Scholar
  87. Zheng GQ (1994) Cytotoxic terpenoids and flavonoids from Artemisia annua. Plant Med 60:54–57CrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Tropical Medicine InstituteGuangzhou University of Chinese MedicineGuangzhouChina

Personalised recommendations