Advertisement

Background

  • Qing-Ping ZengEmail author
Chapter
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)

Abstract

ART has been found, for the first time, to alkylate the heme-containing enzymes (hemoenzymes) by covalently conjugating the prosthetic heme. A high dose of ART can kill cancer cells and bacteria through compromising protective NO production. A low dose of ART can mimic CR to extend lifespan and reduce weight by triggering mitochondrial biogenesis. Therefore, ART can exert versatile beneficial effects on human health in addition to antimalaria.

Keywords

ART Hemoenzymes NO Target-guided effects 

References

  1. Afanas’ev I (2010) Signaling and damaging functions of free radicals in aging—Free radical theory, hormesis, and TOR. Aging Dis 1:75–88Google Scholar
  2. Bao F, Wu P, Xiao N, Qiu F, Zeng QP (2012) Nitric oxide-driven hypoxia initiates synovial angiogenesis, hyperplasia and inflammatory lesions in mice. PLoS ONE 7:e34494CrossRefGoogle Scholar
  3. Borutaite V, Brown GC (2006) S-nitrosothiol inhibition of mitochondrial complex I causes a reversible increase in mitochondrial hydrogen peroxide production. Biochim Biophys Acta 1757:562–566Google Scholar
  4. Boveris A, Carreras MC, Poderoso JJ (2010) The regulation of cell energetics and mitochondrial signaling by nitric oxide. In: Ignarro LJ (ed) Nitric oxide: biology and pathobiology, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  5. Cazelles J, Robert A, Meunier B (2001) Alkylation of heme by artemisinin, an antimalarial drug. Comptes Rendus De L Academie Des Sciences Serie Ii Fascicule C-Chimie 4:85–89Google Scholar
  6. Cerqueira FM, Laurindo FRM, Kowaltowski AJ (2011) Mild mitochondrial uncoupling and CR increase fasting eNOS, Akt and mitochondrial biogenesis. PLoS ONE 6:e18433CrossRefGoogle Scholar
  7. Egerman MA, Cadena SM, Gilbert JA, Meyer A, Nelson HN, Swalley SE, Mallozzi C, Jacobi C, Jennings LL, Clay I, Laurent G, Ma S, Brachat S, Lach-Trifilieff E, Shavlakadze T, Trendelenburg AU, Brack AS, Glass DJ (2015) GDF11 Increases with Age and Inhibits Skeletal Muscle Regeneration. Cell Metab 22:1-11Google Scholar
  8. Forstermann U (2010) Uncoupling of endothelial NOS in cardiovascular disease and its pharmacological reversal. In: Ignarro LJ (ed) Nitric oxide: biology and pathobiology, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  9. Gao Q, Wu P, He J, Zeng QP (2015) Artesunate and betulilic acid block liposaccharide-induced angiogenesis and hyperplasia in mice. Chin Pharm J 50:7–16Google Scholar
  10. Gusarov I, Hatalin SK, Starodubtseva M, Nudler E (2009) Endogenous nitric oxide protects bacteria against a wide spectrum of antibiotics. Science 325:1380–1384CrossRefGoogle Scholar
  11. Hall SS (2014) Young blood. Science 345:1234–1237CrossRefGoogle Scholar
  12. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 1:298–300CrossRefGoogle Scholar
  13. Harman D (1972) Free radical theory of aging: dietary implications. Am J Clin Nutr 25:839–843Google Scholar
  14. Kaiser J (2003) Sipping from a poisoned chalice. Science 302:376–379 CrossRefGoogle Scholar
  15. Loffredo FS, Steinhauser ML, Jay SM, Gannon J, Pancoast JR, Yalamanchi P, Sinha M, Dall'Osso C, Khong D, Shadrach JL, Miller CM, Singer BS, Stewart A, Psychogios N, Gerszten RE, Hartigan AJ, Kim MJ, Serwold T, Wagers AJ, Lee RT (2013) Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophyGoogle Scholar
  16. Meshnick SR, Taylor TE, Kamchonwongpaisan S (1991) Artemisinin (qinghaosu): the role of intracellular hemin in its mechanism of antimalarial action. Mol Biochem Parasitol 49:181–189CrossRefGoogle Scholar
  17. Navarro A, Boveris A (2008) Mitochondrial nitric oxide synthase, mitochondrial brain dysfunction in aging, and mitochondria-targeted antioxidants. Adv Drug Deliv Release 60:1534–1544CrossRefGoogle Scholar
  18. Nisoli E, Carruba MO (2006) Nitric oxide and mitochondrial biogenesis. J Cell Sci 119:2855–2862CrossRefGoogle Scholar
  19. Patcher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424CrossRefGoogle Scholar
  20. Poderoso JJ, Carreras MC, Lisdero C, Riobo N, Schopfer F, Boveri A (1996) Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch Biochem Biophys 328:85–92CrossRefGoogle Scholar
  21. Ridnour LA, Thomas DD, Mancardi D, Espey MG, Miranda KM, Paolocci N, Feelisch M, Fukuto J, Wink DA (2004) The chemistry of nitrosative stress induced by nitric oxide and reactive nitrogen oxide species. Putting prospective on stressful biological situations. Biol Chem 385:1–10CrossRefGoogle Scholar
  22. Robert A, Benoit-Vical F, Claparols C, Meunier B (2005) The antimalarial drug artemisinin alkylates heme in infected mice. Proc Natl Acad Sci USA 102:13676–13680 CrossRefGoogle Scholar
  23. Sinha M, Jang YC, Oh J, Khong D, Wu EY, Manohar R, Miller C, Regalado SG, Loffredo FS, Pancoast JR, Hirshman MF, Lebowitz J, Shadrach JL, Cerletti M, Kim MJ, Serwold T, Goodyear LJ, Rosner B, Lee RT, Wagers AJ (2014) Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science 344:649–652Google Scholar
  24. Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Physiol 279:L1005–L1028Google Scholar
  25. Thomas DD, Liu X, Kantrow SP, Lancaster JRJ (2001) The biological life time of nitric oxide: implications for the perivascular dynamics of nitric oxide and oxygen. Proc Natl Acad Sci USA 98:355–360CrossRefGoogle Scholar
  26. Thomas DD, Espey MG, Ridnour LA, Hofseth LJ, Mancardi D, Harris CC, Wink DA (2004) Hypoxic inducible factor 1 alpha, extracellular signal-regulated kinase, and p53 are regulated by distinct threshold concentrations of nitric oxide. Proc Natl Acad Sci USA 101:8894–8899CrossRefGoogle Scholar
  27. Thomas DD, Flores-Santana W, Switzer CH, Wink DA, Ridnour LA (2010) Determinants of nitric oxide chemistry: Impact of cell signaling processes. In: Ignarro LJ (ed) Nitric oxide: biology and pathobiology, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  28. Trujillo M, Alvarez B, Souza JMS, Romero N, Castro L, Thomson L, Radi R (2010) Mechanisms and biological consequences of peroxynitrite-dependent protein oxidation and nitration. In: Ignarro LJ (ed) Nitric oxide: biology and pathobiology, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  29. Vera E, Bernardes de Jesus B, Foronda M, Flores JM, Blasco MA (2013) Telomerase reverse transcriptase synergizes with calorie restriction to increase health span and extend mouse longevity. PLoS ONE 8:e53760CrossRefGoogle Scholar
  30. Wang DT, Zeng QP (2014) Modulation of yeast transporter gene expression and lipid metabolism by hormesis mimicking calorie restriction. Microbiol China 41: 2012-2021Google Scholar
  31. Wang DT, Wu M, Li SM, Gao Q, Zeng QP (2015a) Artemisinin mimics calorie restriction to extend yeast lifespan via a dual-phase mode: a conclusion drawn from global transcriptome profiling. Sci China Life Sci 57Google Scholar
  32. Wang DT, Wu M, Li SM, Gao Q, Zeng QP (2015b) Artemisinin mimics calorie restriction to initiate antioxidative responses and compromise telomere shortening. PeerJ PrePrints 2:e565v1Google Scholar
  33. Wu P, Bao F, Zheng Q, Xiao N, Wang DT, Zeng QP (2012) Artemisinin and rapamycin compromise nitric oxide-driven and hypoxia-triggered acute articular synovitis in mice. Sci Sin Vitae 42:724–738CrossRefGoogle Scholar
  34. Xu WM, Charles IG, Moncada S (2005) Nitric oxide: orchestrating hypoxia regulation through mitochondrial respiration and the endoplasmic reticulum stress response. Cell Res 15: 63–65Google Scholar
  35. Zeng QP, Zhang PZ (2011) Artemisinin mitigates proliferation of tumor cells by alkylating heme-harboring nitric oxide synthase. NO 24:110–112CrossRefGoogle Scholar
  36. Zeng QP, Xiao N, Wu P, Yang XQ, Zeng LX, Guo XX, Zhang PZ, Qiu F (2011) Artemisinin potentiates antibiotics by inactivating bacterial heme-harbouring nitric oxide synthase and catalase. BMC Res Notes 4:223CrossRefGoogle Scholar
  37. Zhang SM, Gerhard GS (2009) Heme mediates cytotoxicity from artemisinin and serves as a general anti-proliferation target. PLoS ONE 4:e7472Google Scholar
  38. Zhang S, Chen H, Gerhard GS (2010) Heme synthesis increases artemisinin-induced radical formation and cytotoxicity that can be suppressed by superoxide scavengers. Chem Biol Interact 186:30–35 CrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Tropical Medicine InstituteGuangzhou University of Chinese MedicineGuangzhouChina

Personalised recommendations