Skip to main content

Hollow Heaps

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 9134)

Abstract

We introduce the hollow heap, a very simple data structure with the same amortized efficiency as the classical Fibonacci heap. All heap operations except delete and delete-min take O(1) time, worst case as well as amortized; delete and delete-min take \(O(\log n)\) amortized time. Hollow heaps are by far the simplest structure to achieve this. Hollow heaps combine two novel ideas: the use of lazy deletion and re-insertion to do decrease-key operations, and the use of a dag (directed acyclic graph) instead of a tree or set of trees to represent a heap. Lazy deletion produces hollow nodes (nodes without items), giving the data structure its name.

Keywords

  • Amortize Time
  • Fibonacci Heap
  • Virtual Parent
  • Full Node
  • Full Root

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-662-47672-7_56
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-662-47672-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brodal, G.S.: Worst-case efficient priority queues. In: Proceedings of the 7th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 52–58 (1996)

    Google Scholar 

  2. Brodal, G.S., Lagogiannis, G., Tarjan, R.E.: Strict Fibonacci heaps. In: Proc. of the 44th ACM STOC, pp. 1177–1184 (2012)

    Google Scholar 

  3. Chan, T.M.: Quake heaps: a simple alternative to fibonacci heaps. In: Brodnik, A., López-Ortiz, A., Raman, V., Viola, A. (eds.) Space-Efficient Data Structures, Streams, and Algorithms. LNCS, vol. 8066, pp. 27–32. Springer, Heidelberg (2013)

    Google Scholar 

  4. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)

    MATH  MathSciNet  CrossRef  Google Scholar 

  5. Driscoll, J.R., Gabow, H.N., Shrairman, R., Tarjan, R.E.: Relaxed heaps: an alternative to Fibonacci heaps with applications to parallel computation. Communications of the ACM 31(11), 1343–1354 (1988)

    MathSciNet  CrossRef  Google Scholar 

  6. Edmonds, J.: Optimum branchings. J. Res. Nat. Bur. Standards 71B, 233–240 (1967)

    MathSciNet  CrossRef  Google Scholar 

  7. Elmasry, A.: The violation heap: a relaxed Fibonacci-like heap. Discrete Math., Alg. and Appl. 2(4), 493–504 (2010)

    Google Scholar 

  8. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algorithms. Journal of the ACM 34(3), 596–615 (1987)

    MathSciNet  CrossRef  Google Scholar 

  9. Gabow, H.N., Galil, Z., Spencer, T.H., Tarjan, R.E.: Efficient algorithms for finding minimum spanning trees in undirected and directed graphs. Combinatorica 6, 109–122 (1986)

    MATH  MathSciNet  CrossRef  Google Scholar 

  10. Haeupler, B., Sen, S., Tarjan, R.E.: Rank-pairing heaps. SIAM Journal on Computing 40(6), 1463–1485 (2011)

    MATH  MathSciNet  CrossRef  Google Scholar 

  11. Høyer, P.: A general technique for implementation of efficient priority queues. In: Proceedings of the 3rd Israeli Symposium on the Theory of Computing and Systems (ISTCS), pp. 57–66 (1995)

    Google Scholar 

  12. Kaplan, H., Shafrir, N., Tarjan, R.E.: Meldable heaps and boolean union-find. In: Proc. of the 34th ACM STOC, pp. 573–582 (2002)

    Google Scholar 

  13. Kaplan, H., Tarjan, R.E.: Thin heaps, thick heaps. ACM Transactions on Algorithms 4(1), 1–14 (2008)

    MathSciNet  CrossRef  Google Scholar 

  14. Kaplan, H., Tarjan, R.E., Zwick, U.: Fibonacci heaps revisited. CoRR, abs/1407.5750 (2014)

    Google Scholar 

  15. Knuth, D.E.: Sorting and searching. The art of computer programming, vol. 3, 2nd edn. Addison-Wesley (1998)

    Google Scholar 

  16. Peterson, G.L.: A balanced tree scheme for meldable heaps with updates. Technical Report GIT-ICS-87-23, School of Informatics and Computer Science, Georgia Institute of Technology, Atlanta, GA (1987)

    Google Scholar 

  17. Prim, R.C.: Shortest connection networks and some generalizations. Bell System Technical Journal 36, 1389–1401 (1957)

    CrossRef  Google Scholar 

  18. Takaoka, T.: Theory of 2–3 heaps. Discrete Appl. Math. 126(1), 115–128 (2003)

    MATH  MathSciNet  CrossRef  Google Scholar 

  19. Tarjan, R.E.: Data structures and network algorithms. SIAM (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haim Kaplan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hansen, T.D., Kaplan, H., Tarjan, R.E., Zwick, U. (2015). Hollow Heaps. In: Halldórsson, M., Iwama, K., Kobayashi, N., Speckmann, B. (eds) Automata, Languages, and Programming. ICALP 2015. Lecture Notes in Computer Science(), vol 9134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47672-7_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47672-7_56

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47671-0

  • Online ISBN: 978-3-662-47672-7

  • eBook Packages: Computer ScienceComputer Science (R0)