Kitaev, A., Shen, A., Vyalyi, M.: Classical and Quantum Computation. American Mathematical Society (2002)
Google Scholar
Cook, S.: The complexity of theorem proving procedures. In: Proceedings of the 3rd ACM Symposium on Theory of Computing (STOC 1972), pp. 151–158 (1972)
Google Scholar
Levin, L.: Universal search problems. Problems of Information Transmission 9(3), 265–266 (1973)
Google Scholar
Oliveira, R., Terhal, B.M.: The complexity of quantum spin systems on a two-dimensional square lattice. Quantum Information & Computation 8(10), 0900–0924 (2008)
MathSciNet
Google Scholar
Bravyi, S., Vyalyi, M.: Commutative version of the local Hamiltonian problem and common eigenspace problem. Quantum Information & Computation 5(3), 187–215 (2005)
MATH
MathSciNet
Google Scholar
Gharibian, S., Huang, Y., Landau, Z., Shin, S.W.: Quantum Hamiltonian complexity (2014). arXiv.org e-Print quant-ph/1401.3916v1
Google Scholar
Cubitt, T., Montanaro, A.: Complexity classification of local hamiltonian problems (2013). arXiv.org e-Print quant-ph/1311.3161
Google Scholar
Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the 10th Symposium on Theory of computing, pp. 216–226 (1978)
Google Scholar
Kitaev, A.: Unpaired majorana fermions in quantum wires. Physics-Uspekhi 44, 131 (2001)
CrossRef
Google Scholar
Kitaev, A.: Fault-tolerant quantum computation by anyons. Annals of Physics 303(1), 2–30 (2003)
MATH
MathSciNet
CrossRef
Google Scholar
Kitaev, A., Laumann, C.: Topological phases and quantum computation (2009). arXiv.org e-Print quant-ph/0904.2771
Google Scholar
Aharonov, D., Naveh, T.: Quantum NP - A survey (2002). arXiv.org e-Print quant-ph/0210077v1
Gharibian, S., Sikora, J.: Ground state connectivity of local hamiltonians (2014). arXiv.org e-Print quant-ph/1409.3182
Google Scholar
Winter, A.: Coding theorem and strong converse for quantum channels, 45(7), 2481–2485 (1999)
Google Scholar
Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.: The connectivity of boolean satisfiability: computational and structural dichotomies. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 346–357. Springer, Heidelberg (2006)
CrossRef
Google Scholar
Mouawad, A., Nishimura, N., Pathak, V., Raman, V.: Shortest reconfiguration paths in the solution space of Boolean formulas (2014). arXiv.org e-Print cs.CC/1404.3801v2
Google Scholar
Cereceda, L., van den Heuvel, J., Johnson, M.: Connectedness of the graph of vertex-colorings. Discrete Mathematics 308(56), 913–919 (2008)
MATH
MathSciNet
CrossRef
Google Scholar
Bonsma, P., Cereceda, L.: Finding paths between graph colourings: PSPACE-completeness and superpolynomial distances. Theoretical Computer Science 410(50), 5215–5226 (2009)
MATH
MathSciNet
CrossRef
Google Scholar
Cereceda, L., van den Heuvel, J., Johnson, M.: Finding paths between 3-colorings. Journal of Graph Theory 67(1), 69–82 (2011)
MATH
MathSciNet
CrossRef
Google Scholar
Ito, T., Kamiński, M., Demaine, E.D.: Reconfiguration of list edge-colorings in a graph. Discrete Applied Mathematics 160(15), 2199–2207 (2012)
MATH
MathSciNet
CrossRef
Google Scholar
Wocjan, P., Janzing, D., Beth, T.: Two QCMA-complete problems. Quantum Information & Computation 3(6), 635–643 (2003)
MATH
MathSciNet
Google Scholar
Wocjan, P., Yard, J.: The Jones polynomial: quantum algorithms and applications in quantum complexity theory. Quantum Information & Computation 8(1), 147–180 (2008)
MATH
MathSciNet
Google Scholar
Janzing, D., Wocjan, P.: BQP-complete problems concerning mixing properties of classical random walks on sparse graphs (2006). arXiv.org e-Print quant-ph/0610235v2
Gharibian, S., Kempe, J.: Hardness of approximation for quantum problems. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 387–398. Springer, Heidelberg (2012)
CrossRef
Google Scholar
Brown, B., Flammia, S., Schuch, N.: Computational difficulty of computing the density of states. Physical Review Letters 104, 040501 (2011)
CrossRef
Google Scholar
Ambainis, A.: On physical problems that are slightly more difficult than QMA. In: Proceedings of 29th IEEE Conference on Computational Complexity (CCC 2014), pp. 32–43 (2014)
Google Scholar
Kempe, J., Regev, O.: 3-local Hamiltonian is QMA-complete. Quantum Information & Computation 3(3), 258–264 (2003)
MATH
MathSciNet
Google Scholar