Skip to main content

Quantifying Competitiveness in Paging with Locality of Reference

  • Conference paper
  • First Online:
Automata, Languages, and Programming (ICALP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9134))

Included in the following conference series:

  • 2643 Accesses

Abstract

The classical paging problem is to maintain a two-level memory system so that a sequence of requests to memory pages can be served with a small number of faults. Standard competitive analysis gives overly pessimistic results as it ignores the fact that real-world input sequences exhibit locality of reference. In this paper we study the paging problem using an intuitive and simple locality model that records inter-request distances in the input. A characteristic vector \(\mathcal{C}\) defines a class of request sequences that satisfy certain properties on these distances. The concept was introduced by Panagiotou and Souza [19].

As a main contribution we develop new and improved bounds on the performance of important paging algorithms. A strength and novelty of the results is that they express algorithm performance in terms of locality parameters. In a first step we develop a new lower bound on the number of page faults incurred by an optimal offline algorithm opt. The bound is tight up to a small additive constant. Based on these expressions for opt’s cost, we obtain nearly tight upper and lower bounds on lru’s competitiveness, given any characteristic vector \(\mathcal{C}\). The resulting ratios range between 1 and \(k\), depending on \(\mathcal{C}\). Furthermore, we compare lru to fifo and fwf. For the first time we show bounds that quantify the difference between lru’s performance and that of the other two strategies. The results imply that lru is strictly superior on inputs with a high degree of locality of reference. In particular, there exist general input families for which lru achieves constant competitive ratios whereas the guarantees of fifo and fwf tend to \(k\), the size of the fast memory. Finally, we report on an experimental study that demonstrates that our theoretical bounds are very close to the experimentally observed ones. Hence we believe that our contributions bring competitive paging again closer to practice.

Susanne Albers Work supported by the German Research Foundation, grant Al 464/7-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albers, S., Favrholdt, L.M., Giel, O.: On paging with locality of reference. J. Comput. Syst. Sci. 70(2), 145–175 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Angelopoulos, S., Dorrigiv, R., López-Ortiz, A.: On the separation and equivalence of paging strategies. In: Proc. 18th ACM-SIAM SODA, pp. 229–237 (2007)

    Google Scholar 

  3. Angelopoulos, S., Schweitzer, P.: Paging and list update under bijective analysis. J. ACM 60(2), 7 (2013)

    Article  MathSciNet  Google Scholar 

  4. Becchetti, L.: Modeling locality: a probabilistic analysis of LRU and FWF. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 98–109. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Ben-David, S., Borodin, A.: A new measure for the study of on-line algorithms. Algorithmica 11(1), 73–91 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Boyar, J., Favrholdt, L.M., Larsen, K.S.: The relative worst-order ratio applied to paging. J. Comput. Syst. Sci. 73(5), 818–843 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Boyar, J., Gupta, S., Larsen, K.S.: Access graphs results for LRU versus FIFO under relative worst order analysis. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp. 328–339. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Boyar, J., Gupta, S., Larsen, K.S.: Relative interval analysis of paging algorithms on access graphs. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS, vol. 8037, pp. 195–206. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  9. Borodin, A., Irani, S., Raghavan, P., Schieber, B.: Competitive paging with locality of reference. J. Comput. Syst. Sci. 50, 244–258 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dorrigiv, R., Ehmsen, M.R., López-Ortiz, A.: Parameterized analysis of paging and list update algorithms. In: Bampis, E., Jansen, K. (eds.) WAOA 2009. LNCS, vol. 5893, pp. 104–115. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Dorrigiv, R., López-Ortiz, A.: On developing new models, with paging as a case study. SIGACT News 40(4), 98–123 (2009)

    Article  Google Scholar 

  12. Chrobak, M., Noga, J.: LRU is better than FIFO. Algorithmica 23, 180–185 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dorrigiv, R., López-Ortiz, A., Munro, J.I.: On the relative dominance of paging algorithms. Theor. Comput. Sci. 410(38–40), 3694–3701 (2009)

    Article  MATH  Google Scholar 

  14. S. Kaplan. Trace reduction for virtual memory simulation. Benchmark library at https://www3.amherst.edu/~sfkaplan/research/trace-reduction/

  15. Kaplan, S.F., Smaragdakis, Y., Wilson, P.R.: Trace reduction for virtual memory simulations. In: Proc. International ACM SIGMETRICS Conference, pp. 47–58 (1999)

    Google Scholar 

  16. Karlin, A., Phillips, S., Raghavan, P.: Markov paging. SIAM J. Comput. 30(3), 906–922 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Koutsoupias, E., Papadimitriou, C.H.: Beyond competitive analysis. SIAM J. Comput. 30(1), 300–317 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Irani, S., Karlin, A.R., Phillips, S.: Strongly competitive algorithms for paging with locality of reference. SIAM J. Comput. 25, 477–497 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Panagiotou, K., Souza, A.: On adequate performance measures for paging. In: Proc. 38th Annual ACM Symposium on Theory of Computing (STOC), pp. 487–496 (2006)

    Google Scholar 

  20. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Commun. ACM 28, 202–208 (1985)

    Article  MathSciNet  Google Scholar 

  21. Young, N.E.: The \(k\)-server dual and loose competitiveness for paging. Algorithmica 11, 525–541 (1994)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Albers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Albers, S., Frascaria, D. (2015). Quantifying Competitiveness in Paging with Locality of Reference. In: Halldórsson, M., Iwama, K., Kobayashi, N., Speckmann, B. (eds) Automata, Languages, and Programming. ICALP 2015. Lecture Notes in Computer Science(), vol 9134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47672-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47672-7_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47671-0

  • Online ISBN: 978-3-662-47672-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics