Skip to main content

Limitations of Algebraic Approaches to Graph Isomorphism Testing

  • Conference paper
  • First Online:
Automata, Languages, and Programming (ICALP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9134))

Included in the following conference series:

Abstract

We investigate the power of graph isomorphism algorithms based on algebraic reasoning techniques like Gröbner basis computation. The idea of these algorithms is to encode two graphs into a system of equations that are satisfiable if and only if if the graphs are isomorphic, and then to (try to) decide satisfiability of the system using, for example, the Gröbner basis algorithm. In some cases this can be done in polynomial time, in particular, if the equations admit a bounded degree refutation in an algebraic proof systems such as Nullstellensatz or polynomial calculus. We prove linear lower bounds on the polynomial calculus degree over all fields of characteristic \(\ne 2\) and also linear lower bounds for the degree of Positivstellensatz calculus derivations.

We compare this approach to recently studied linear and semidefinite programming approaches to isomorphism testing, which are known to be related to the combinatorial Weisfeiler-Lehman algorithm. We exactly characterise the power of the Weisfeiler-Lehman algorithm in terms of an algebraic proof system that lies between degree-k Nullstellensatz and degree-k polynomial calculus.

RWTH Aachen University—The first author is currently at KTH Stockholm, supported by a fellowship within the Postdoc-Program of the German Academic Exchange Service (DAAD).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Atserias, A., Maneva, E.: Sherali-Adams relaxations and indistinguishability in counting logics. SIAM J. Comput. 42(1), 112–137 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  2. Beame, P., Impagliazzo, R., Krajicek, J., Pitassi, T., Pudlak, P.: Lower bounds on Hilbert’s nullstellensatz and propositional proofs. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pp. 794–806 (1994)

    Google Scholar 

  3. Buss, S.: Lower bounds on nullstellensatz proofs via designs. In: Proof Complexity and Feasible Arithmetics, pp. 59–71. American Mathematical Society (1998)

    Google Scholar 

  4. Buss, S., Grigoriev, D., Impagliazzo, R., Pitassi, T.: Linear gaps between degrees for the polynomial calculus modulo distinct primes. Journal of Computer and System Sciences 62(2), 267–289 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cai, J., Fürer, M., Immerman, N.: An optimal lower bound on the number of variables for graph identification. Combinatorica 12, 389–410 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. Clegg, M., Edmonds, J., Impagliazzo, R.: Using the Groebner basis algorithm to find proofs of unsatisfiability. In: Proceedings of the 28th Annual ACM Symposium on Theory of Computing, pp. 174–183 (1996)

    Google Scholar 

  7. Codenotti, P., Schoenbeck, G., Snook, A.: Graph isomorphism and the Lasserre hierarchy (2014). CoRR arXiv:1107.0632v2

  8. Grigoriev, D.: Linear lower bound on degrees of positivstellensatz calculus proofs for the parity. Theoretical Computer Science 259(1–2), 613–622 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Grigoriev, D., Vorobjov, N.: Complexity of null- and positivstellensatz proofs. Annals of Pure and Applied Logic 113(1–3), 153–160 (2001)

    Article  MathSciNet  Google Scholar 

  10. Grohe, M., Otto, M.: Pebble games and linear equations. In: Cégielski, P., Durand, A. (eds.) Proceedings of the 26th International Workshop on Computer Science Logic. Leibniz International Proceedings in Informatics (LIPIcs), vol. 16, pp. 289–304 (2011)

    Google Scholar 

  11. Hella, L.: Logical hierarchies in PTIME. Information and Computation 129, 1–19 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM Journal on Optimization 11(3), 796–817 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Malkin, P.: Sherali-Adams relaxations of graph isomorphism polytopes. Discrete Optimization 12, 73–97 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  14. O’Donnell, R., Wright, J., Wu, C., Zhou, Y.: Hardness of robust graph isomorphism, Lasserre gaps, and asymmetry of random graphs. In: Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1659–1677 (2014)

    Google Scholar 

  15. Parrilo, P.: Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization. Ph.D. thesis, California Institute of Technology (2000)

    Google Scholar 

  16. Sherali, H.D., Adams, W.P.: A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM Journal on Discrete Mathematics 3(3), 411–430 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  17. Tinhofer, G.: Graph isomorphism and theorems of Birkhoff type. Computing 36, 285–300 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  18. Torán, J.: On the resolution complexity of graph non-isomorphism. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 52–66. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Berkholz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berkholz, C., Grohe, M. (2015). Limitations of Algebraic Approaches to Graph Isomorphism Testing. In: Halldórsson, M., Iwama, K., Kobayashi, N., Speckmann, B. (eds) Automata, Languages, and Programming. ICALP 2015. Lecture Notes in Computer Science(), vol 9134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47672-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47672-7_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47671-0

  • Online ISBN: 978-3-662-47672-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics