Skip to main content

Chemistry of the Methanol to Olefin Conversion

  • Chapter

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

Methanol conversion to olefin (MTO) has been an intriguing topic for both catalytic research and chemical industry. During the induction time, interesting chemistry occurred for the generation of initial olefin products. After the induction time, the chemistry of MTO proceeds mainly through hydrocarbon pool mechanism, in which carbon pool species are involved in either side-chain growth route or paring route to produce an olefin product. And other minor routes such as direct routes and olefin homologation/cracking route also play certain roles. However, more detailed and extensive research are ahead to fully describe the chemistry of MTO.

The commercialization of methanol conversion technology has been very successful, with several versions designated for certain products, i.e., MTG for gasoline and MTP for propylene. One million ton scale DMTO plant has been in full operation in China. Coupled with coal conversion to methanol, MTO technology is now a new route for major petrochemical raw materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chang CD, Silvestri AJ (1977) The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts. J Catal 47:249–259

    Article  CAS  Google Scholar 

  2. Chang CD (1981) A reply to Kagi: mechanism of conversion of methanol over ZSM-5 catalyst. J Catal 69:244–245

    Article  CAS  Google Scholar 

  3. Chang CD (1983) Hydrocarbons from methanol. Catal Rev Sci Eng 25:1–118

    Article  CAS  Google Scholar 

  4. Haw JF, Song W, Marcus DM, Nicholas JB (2003) The mechanism of methanol to hydrocarbon catalysis. Acc Chem Res 36:317–326

    Article  CAS  Google Scholar 

  5. Chang CD (1992) The New Zealand Gas-to-Gasoline plant: An engineering tour de force. Catal Today 13:103–111

    Article  CAS  Google Scholar 

  6. Ondrey G (2011) Coal-to-chemicals. Chem Eng 118:16–20

    Google Scholar 

  7. Methanol-to-Olefins unit starts up in China Oil & Gas Journal, 2010, 108

    Google Scholar 

  8. Stocker M (1999) Methanol-to-hydrocarbons: catalytic materials and their behavior. Microporous Mesoporous Mater 29:3–48

    Article  CAS  Google Scholar 

  9. Wang W, Jiang YJ, Hunger M (2006) Mechanistic investigations of the methanol-to-olefin (MTO) process on acidic zeolite catalysts by in situ solid-state NMR spectroscopy. Catal Today 113:102–114

    Article  CAS  Google Scholar 

  10. Lesthaeghe D, Van Speybroeck V, Waroquier M (2009) Theoretical evaluation of zeolite confinement effects on the reactivity of bulky intermediates. Phys Chem Chem Phys 11:5222–5226

    Article  CAS  Google Scholar 

  11. Olsbye U, Svelle S, Bjorgen M, Beato P, Janssens TV, Joensen F, Bordiga S, Lillerud KP (2012) Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity. Angew Chem Int Ed Engl 51:5810–5831

    Article  CAS  Google Scholar 

  12. Guisnet M (2002) “Coke” molecules trapped in the micropores of zeolites as active species in hydrocarbon transformations. J Mol Catal A Chem 182:367–382

    Article  Google Scholar 

  13. Haw JF, Marcus DM (2005) Well-defined (supra) molecular structures in zeolite methanol-to-olefin catalysis. Top Catal 34:41–48

    Article  CAS  Google Scholar 

  14. Froment G (2008) Kinetic modeling of hydrocarbon processing and the effect of catalyst deactivation by coke formation. Catal Rev 50:1–18

    Article  CAS  Google Scholar 

  15. Smit B, Maesen TL (2008) Molecular simulations of zeolites: adsorption, diffusion, and shape selectivity. Chem Rev 108:4125–4184

    Article  CAS  Google Scholar 

  16. Wang W, Hunger M (2008) Reactivity of surface alkoxy species on acidic zeolite catalysts. Acc Chem Res 41:895–904

    Article  CAS  Google Scholar 

  17. White JL (2011) Methanol-to-hydrocarbon chemistry: the carbon pool revolution. Catal Sci Technol 1:1630–1635

    Article  CAS  Google Scholar 

  18. Ilias S, Bhan A (2013) Mechanism of the catalytic conversion of methanol to hydrocarbons. ACS Catal 3:18–31

    Article  CAS  Google Scholar 

  19. Ahmadi SMA, Askari S, Halladj R (2013) A review on kinetic modeling of deactivation of SAPO-34 catalyst during Methanol to Olefins (MTO) process. Afinidad 70:130–138

    CAS  Google Scholar 

  20. Wang W, Buchholz A, Seiler M, Hunger M (2003) Evidence for an initiation of the methanol-to-olefin process by reactive surface methoxy groups on acidic zeolite catalysts. J Am Chem Soc 125:15260–15267

    Article  CAS  Google Scholar 

  21. Svelle S, Rønning PO, Kolboe S (2004) Kinetic studies of zeolite-catalyzed methylation reactions 1. Coreaction of [C-12]ethene and [C-13]methanol. J Catal 224:115–123

    Article  CAS  Google Scholar 

  22. Svelle S, Ronning P, Olsbye U, Kolboe S (2005) Kinetic studies of zeolite-catalyzed methylation reactions. Part 2. Co-reaction of [C-12]propene or [C-12]n-butene and [C-13]methanol. J Catal 234:385–400

    Article  CAS  Google Scholar 

  23. Gayubo A, Aguayo A, Alonso A, Atutxa A, Bilbao J (2005) Reaction scheme and kinetic modelling for the MTO process over a SAPO-18 catalyst. Catal Today 106:112–117

    Article  CAS  Google Scholar 

  24. Chen D, Grønvold A, Moljord K, Holmen A (2007) Methanol conversion to light olefins over SAPO-34: reaction network and deactivation kinetics. Ind Eng Chem Res 46:4116–4123

    Article  CAS  Google Scholar 

  25. Gayubo AG, Aguayo AT, Alonso A, Bilbao J (2007) Kinetic modeling of the methanol-to-olefins process on a silicoaluminophosphate (SAPO-18) catalyst by considering deactivation and the formation of individual olefins. Ind Eng Chem Res 46:1981–1989

    Article  CAS  Google Scholar 

  26. Zhou H, Wang Y, Wei F, Wang D, Wang Z (2008) Kinetics of the reactions of the light alkenes over SAPO-34. Appl Catal A Gen 348:135–141

    Article  CAS  Google Scholar 

  27. Froment GF (2008) Kinetic modeling of hydrocarbon processing and the effect of catalyst deactivation by coke formation. Catal Rev Sci Eng 50:1–18

    Article  CAS  Google Scholar 

  28. Mier D, Gayubo AG, Aguayo AT, Olazar M, Bilbao J (2011) Olefin production by cofeeding methanol and n-butane: kinetic modeling considering the deactivation of HZSM-5 zeolite. AIChE J 57:2841–2853

    Article  CAS  Google Scholar 

  29. Van Speybroeck V, Van der Mynsbrugge J, Vandichel M, Hemelsoet K, Lesthaeghe D, Ghysels A, Marin GB, Waroquier M (2011) First principle kinetic studies of zeolite-catalyzed methylation reactions. J Am Chem Soc 133:888–899

    Article  CAS  Google Scholar 

  30. Hill IM, Hashimi SA, Bhan A (2012) Kinetics and mechanism of olefin methylation reactions on zeolites. J Catal 285:115–123

    Article  CAS  Google Scholar 

  31. Van der Mynsbrugge J, Visur M, Olsbye U, Beato P, Bjørgen M, Van Speybroeck V, Svelle S (2012) Methylation of benzene by methanol: single-site kinetics over H-ZSM-5 and H-beta zeolite catalysts. J Catal 292:201–212

    Article  CAS  Google Scholar 

  32. Taheri Najafabadi A, Fatemi S, Sohrabi M, Salmasi M (2012) Kinetic modeling and optimization of the operating condition of MTO process on SAPO-34 catalyst. J Ind Eng Chem 18:29–37

    Article  CAS  Google Scholar 

  33. Dahl IM, Kolboe S (1993) On the reaction mechanism for propene formation in the MTO reaction over SAPO-34. Catal Lett 20:329–336

    Article  CAS  Google Scholar 

  34. Dahl IM, Kolboe S (1996) On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34.2: isotopic labeling studies of the co-reaction of propene and methanol. J Catal 161:304–309

    Article  CAS  Google Scholar 

  35. Mikkelsen O, Ronning PO, Kolboe S (2000) Use of isotopic labeling for mechanistic studies of the methanol-to-hydrocarbons reaction: methylation of toluene with methanol over H-ZSM-5, H-mordenite and H-beta. Microporous Mesoporous Mater 40:95–113

    Article  CAS  Google Scholar 

  36. Bjorgen M, Olsbye U, Kolboe S (2003) Coke precursor formation and zeolite deactivation: mechanistic insights from hexamethylbenzene conversion. J Catal 215:30–44

    Article  CAS  Google Scholar 

  37. Bjorgen M, Olsbye U, Petersen D, Kolboe S (2004) The methanol-to-hydrocarbons reaction: insight into the reaction mechanism from [C-12]benzene and [C-13]methanol coreactions over zeolite H-beta. J Catal 221:1–10

    Article  CAS  Google Scholar 

  38. Svelle S, Joensen F, Nerlov J, Olsbye U, Lillerud KP, Kolboe S, Bjorgen M (2006) Conversion of methanol into hydrocarbons over zeolite H-ZSM-5: ethene formation is mechanistically separated from the formation of higher alkenes. J Am Chem Soc 128:14770–14771

    Article  CAS  Google Scholar 

  39. Bjorgen M, Svelle S, Joensen F, Nerlov J, Kolboe S, Bonino F, Palumbo L, Bordiga S, Olsbye U (2007) Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: on the origin of the olefinic species. J Catal 249:195–207

    Article  CAS  Google Scholar 

  40. Bjørgen M, Akyalcin S, Olsbye U, Benard S, Kolboe S, Svelle S (2010) Methanol to hydrocarbons over large cavity zeolites: toward a unified description of catalyst deactivation and the reaction mechanism. J Catal 275:170–180

    Article  CAS  Google Scholar 

  41. Song WG, Haw JF, Nicholas JB, Heneghan CS (2000) Methylbenzenes are the organic reaction centers for methanol-to-olefin catalysis on HSAPO-34. J Am Chem Soc 122:10726–10727

    Article  CAS  Google Scholar 

  42. Sassi A, Wildman MA, Ahn HJ, Prasad P, Nicholas JB, Haw JF (2002) Methylbenzene chemistry on zeolite HBeta: multiple insights into methanol-to-olefin catalysis. J Phys Chem B 106:2294–2303

    Article  CAS  Google Scholar 

  43. Marcus DM, Song WG, Ng LL, Haw JF (2002) Aromatic hydrocarbon formation in HSAPO-18 catalysts: cage topology and acid site density. Langmuir 18:8386–8391

    Article  CAS  Google Scholar 

  44. Marcus DM, Hayman MJ, Blau YM, Guenther DR, Ehresmann JO, Kletnieks PW, Haw JF (2006) Mechanistically significant details of the H/D exchange reactions of propene over acidic zeolite catalysts. Angew Chem Int Ed 45:1933–1935

    Article  CAS  Google Scholar 

  45. Marcus DM, McLachlan KA, Wildman MA, Ehresmann JO, Kletnieks PW, Haw JF (2006) Experimental evidence from H/D exchange studies for the failure of direct C-C coupling mechanisms in the methanol-to-olefin process catalyzed by HSAPO-34. Angew Chem Int Ed 45:3133–3136

    Article  CAS  Google Scholar 

  46. Goguen PW, Xu T, Barich DH, Skloss TW, Song W, Wang Z, Nicholas JB, Haw JF (1998) Pulse-quench catalytic reactor studies reveal a carbon-pool mechanism in methanol-to-gasoline chemistry on zeolite HZSM-5. J Am Chem Soc 120:2650–2651

    Article  CAS  Google Scholar 

  47. Song W, Fu H, Haw JF (2001) Selective synthesis of methylnaphthalenes in HSAPO-34 cages and their function as reaction centers in methanol-to-olefin catalysis. J Phys Chem B 105:12839–12843

    Article  CAS  Google Scholar 

  48. Fu H, Song W, Haw JF (2001) Polycyclic aromatics formation in HSAPO-34 during methanol-to-olefin catalysis: ex situ characterization after cryogenic grinding. Catal Lett 76:89–94

    Article  CAS  Google Scholar 

  49. Fu H, Song W, Marcus DM, Haw JF (2002) Ship-in-a-bottle synthesis of methylphenols in HSAPO-34 cages from methanol and air. J Phys Chem B 106:5648–5652

    Article  CAS  Google Scholar 

  50. Svelle S, Bjorgen M, Kolboe S, Kuck D, Letzel M, Olsbye U, Sekiguchi O, Uggerud E (2006) Intermediates in the methanol-to-hydrocarbons (MTH) reaction: a gas phase study of the unimolecular reactivity of multiply methylated benzenium cations. Catal Lett 109:25–35

    Article  CAS  Google Scholar 

  51. Barich DH, Xu T, Song W, Wang Z, Deng F, Haw JF (1998) N-alkylnitrilium cations in zeolites: a study using theoretical chemistry and in situ NMR with the pulse-quench reactor. J Phys Chem B 102:7163–7168

    Article  CAS  Google Scholar 

  52. Haw JF, Nicholas JB, Song W, Deng F, Wang Z, Xu T, Heneghan CS (2000) Roles for cyclopentenyl cations in the synthesis of hydrocarbons from methanol on zeolite catalyst HZSM-5. J Am Chem Soc 122:4763–4775

    Article  CAS  Google Scholar 

  53. Chua YT, Stair PC, Nicholas JB, Song W, Haw JF (2003) UV Raman spectrum of 1,3-dimethylcyclopentenyl cation adsorbed in zeolite H-MFI. J Am Chem Soc 125:866–867

    Article  CAS  Google Scholar 

  54. Salehirad F, Anderson MW (1998) NMR studies of methanol-to-hydrocarbon chemistry. Part 1 – Primary products and mechanistic considerations using a wide-pore catalyst. J Chem Soc Faraday Trans 94:1911–1918

    Article  CAS  Google Scholar 

  55. Salehirad F, Anderson MW (1998) Solid-state NMR study of methanol conversion over ZSM-23, SAPO-11 and SAPO-5 molecular sieves: Part 2. J Chem Soc Faraday Trans 94:2857–2866

    Article  CAS  Google Scholar 

  56. Hunger M, Freude D, Pfeifer H (1991) Magic-angle spinning nuclear magnetic resonance studies of water molecules adsorbed on Brønsted- and Lewis-acid sites in zeolites and amorphous silica–aluminas. J Chem Soc Faraday Trans 87:657–662

    Article  CAS  Google Scholar 

  57. Hunger M (2008) In situ flow MAS NMR spectroscopy: state of the art and applications in heterogeneous catalysis. Prog Nucl Magn Reson Spectrosc 53:105–127

    Article  CAS  Google Scholar 

  58. Huang J, Jiang Y, Marthala VRR, Bressel A, Frey J, Hunger M (2009) Effect of pore size and acidity on the coke formation during ethylbenzene conversion on zeolite catalysts. J Catal 263:277–283

    Article  CAS  Google Scholar 

  59. Dai W, Wang X, Wu G, Guan N, Hunger M, Li L (2011) Methanol-to-olefin conversion on silicoaluminophosphate catalysts: effect of bronsted acid sites and framework structures. ACS Catal 1:292–299

    Article  CAS  Google Scholar 

  60. Dai W, Li N, Li L, Guan N, Hunger M (2011) Unexpected methanol-to-olefin conversion activity of low-silica aluminophosphate molecular sieves. Catal Commun 16:124–127

    Article  CAS  Google Scholar 

  61. Dai W, Scheibe M, Guan N, Li L, Hunger M (2011) Fate of bronsted acid sites and benzene-based carbenium ions during methanol-to-olefin conversion on SAPO-34. ChemCatChem 3:1130–1133

    Article  CAS  Google Scholar 

  62. Jiang Y, Huang J, Dai W, Hunger M (2011) Solid-state nuclear magnetic resonance investigations of the nature, property, and activity of acid sites on solid catalysts. Solid State Nucl Magn Reson 39:116–141

    Article  CAS  Google Scholar 

  63. Dai W, Scheibe M, Li L, Guan N, Hunger M (2012) Effect of the methanol-to-olefin conversion on the PFG NMR self-diffusivities of ethane and ethene in large-crystalline SAPO-34. J Phys Chem C 116:2469–2476

    Article  CAS  Google Scholar 

  64. Dai W, Wu G, Li L, Guan N, Hunger M (2013) Mechanisms of the deactivation of SAPO-34 materials with different crystal sizes applied as MTO catalysts. ACS Catal 3:588–596

    Article  CAS  Google Scholar 

  65. Lesthaeghe D, Van Speybroeck V, Marin GB, Waroquier M (2006) Understanding the failure of direct C-C coupling in the zeolite-catalyzed methanol-to-olefin process. Angew Chem Int Ed 45:1714–1719

    Article  CAS  Google Scholar 

  66. McCann DM, Lesthaeghe D, Kletnieks PW, Guenther DR, Hayman MJ, Van Speybroeck V, Waroquier M, Haw JF (2008) A complete catalytic cycle for supramolecular methanol-to-olefins conversion by linking theory with experiment. Angew Chem Int Ed 47:5179–5182

    Article  CAS  Google Scholar 

  67. Lesthaeghe D, Horré A, Waroquier M, Marin GB, Van Speybroeck V (2009) Theoretical insights on methylbenzene side-chain growth in ZSM-5 zeolites for methanol-to-olefin conversion. Chem Eur J 15:10803–10808

    Article  CAS  Google Scholar 

  68. Lesthaeghe D, Van der Mynsbrugge J, Vandichel M, Waroquier M, Van Speybroeck V (2011) Full theoretical cycle for both ethene and propene formation during methanol-to-olefin conversion in H-ZSM-5. ChemCatChem 3:208–212

    Article  CAS  Google Scholar 

  69. Olah GA (1981) Higher coordinate (hypercarbon containing) carbocations and their role in electrophilic reactions of hydrocarbons. Pure Appl Chem 53:201–207

    Article  CAS  Google Scholar 

  70. Hutchings GJ, Gottschalk F, Hall MVM, Hunter R (1987) Hydrocarbon formation from methylating agents over the zeolite catalyst ZSM-5: comments on the mechanism of carbon–carbon bond and methane formation. J Chem Soc Faraday Trans I 83:571–583

    Article  CAS  Google Scholar 

  71. Hutchings GJ, Watson GW, Willock DJ (1999) Methanol conversion to hydrocarbons over zeolite catalysts: comments on the reaction mechanism for the formation of the first carbon-carbon bond. Microporous Mesoporous Mater 29:67–77

    Article  CAS  Google Scholar 

  72. Wang W, Seiler M, Hunger M (2001) Role of surface methoxy species in the conversion of methanol to dimethyl ether on acidic zeolites investigated by in situ stopped-flow MAS NMR spectroscopy. J Phys Chem B 105:12553–12558

    Article  CAS  Google Scholar 

  73. Seiler M, Wang W, Buchholz A, Hunger M (2003) Direct evidence for a catalytically active role of the hydrocarbon pool formed on zeolite H-ZSM-5 during the methanol-to-olefin conversion. Catal Lett 88:187–191

    Article  CAS  Google Scholar 

  74. Wang W, Buchholz A, Arnold A, Xu M, Hunger M (2003) Effect of surface methoxy groups on the Al-27 quadrupole parameters of framework aluminum atoms in calcined zeolite H-Y. Chem Phys Lett 370:88–93

    Article  CAS  Google Scholar 

  75. Wang W, Jiao J, Jiang Y, Ray SS, Hunger M (2005) Formation and decomposition of surface ethoxy species on acidic zeolite Y. ChemPhysChem 6:1467–1469

    Article  CAS  Google Scholar 

  76. Jiang Y, Hunger M, Wang W (2006) On the reactivity of surface methoxy species in acidic zeolites. J Am Chem Soc 128:11679–11692

    Article  CAS  Google Scholar 

  77. Mole T, Whiteside JA, Seddon D (1983) Aromatic co-catalysis of methanol conversion over zeolite catalysts. J Catal 82:261–266

    Article  CAS  Google Scholar 

  78. Song W, Marcus DM, Fu H, Ehresmann JO, Haw JF (2002) An oft-studied reaction that may never have been: direct catalytic conversion of methanol or dimethyl ether to hydrocarbons on the solid acids HZSM-5 or HSAPO-34. J Am Chem Soc 124:3844–3845

    Article  CAS  Google Scholar 

  79. Cui ZM, Liu Q, Song WG, Wan LJ (2006) Insights into the mechanism of methanol-to-olefin conversion at zeolites with systematically selected framework structures. Angew Chem Int Ed 45:6512–6515

    Article  CAS  Google Scholar 

  80. Cui ZM, Liu Q, Ma Z, Bian SW, Song WG (2008) Direct observation of olefin homologations on zeolite ZSM-22 and its implications to methanol to olefin conversion. J Catal 258:83–86

    Article  CAS  Google Scholar 

  81. Cui ZM, Liu Q, Baint SW, Ma Z, Song WG (2008) The role of methoxy groups in methanol to olefin conversion. J Phys Chem C 112:2685–2688

    Article  CAS  Google Scholar 

  82. Song ZX, Takahashi A, Mimura N, Fujitani T (2009) Production of propylene from ethanol over ZSM-5 zeolites. Catal Lett 131:364–369

    Article  CAS  Google Scholar 

  83. Wang Q, Cui Z-M, Cao C-Y, Song W-G (2011) 0.3 angstrom makes the difference: dramatic changes in methanol-to-olefin activities between H-ZSM-12 and H-ZSM-22 zeolites. J Phys Chem C 115:24987–24992

    Article  CAS  Google Scholar 

  84. Wei F-F, Cui Z-M, Meng X-J, Cao C-Y, Xiao F-S, Song W-G (2014) Origin of the low olefin production over HZSM-22 and HZSM-23 zeolites: external acid sites and pore mouth catalysis. ACS Catal 4:529–534

    Article  CAS  Google Scholar 

  85. Liu Z, Liang J (1999) Methanol to olefin conversion catalysts. Curr Opin Solid State Mater Sci 4:80–84

    Article  CAS  Google Scholar 

  86. Li J, Qi Y, Liu Z, Liu G, Zhang D (2008) Co-reaction of ethene and methylation agents over SAPO-34 and ZSM-22. Catal Lett 121:303–310

    Article  CAS  Google Scholar 

  87. Li J, Wei Y, Qi Y, Tian P, Li B, He Y, Chang F, Sun X, Liu Z (2011) Conversion of methanol over H-ZSM-22: the reaction mechanism and deactivation. Catal Today 164:288–292

    Article  CAS  Google Scholar 

  88. Li JZ, Wei YX, Liu GY, Qi Y, Tian P, Li B, He YL, Liu ZM (2011) Comparative study of MTO conversion over SAPO-34, H-ZSM-5 and H-ZSM-22: correlating catalytic performance and reaction mechanism to zeolite topology. Catal Today 171:221–228

    Article  CAS  Google Scholar 

  89. Maihom T, Boekfa B, Sirijaraensre J, Nanok T, Probst M, Limtrakul J (2009) Reaction mechanisms of the methylation of ethene with methanol and dimethyl ether over H-ZSM-5: an ONIOM study. J Phys Chem C 113:6654–6662

    Article  CAS  Google Scholar 

  90. Simonetti DA, Ahn JH, Iglesia E (2011) Mechanistic details of acid-catalyzed reactions and their role in the selective synthesis of triptane and isobutane from dimethyl ether. J Catal 277:173–195

    Article  CAS  Google Scholar 

  91. Xu T, Haw JF (1994) NMR observation of indanyl carbenium ion intermediates in the reactions of hydrocarbons on acidic zeolites. J Am Chem Soc 116:10188–10195

    Article  CAS  Google Scholar 

  92. Kolboe S (1986) Methanol reactions on ZSM-5 and other zeolite catalysts: autocatalysis and reaction mechanism. Acta Chem Scand 40:711–713

    Article  Google Scholar 

  93. Dahl IM, Kolboe S (1994) On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34: I. Isotopic labeling studies of the co-reaction of ethene and methanol. J Catal 149:458–464

    Article  CAS  Google Scholar 

  94. Hunger M (1997) Bronsted acid sites in zeolites characterized by multinuclear solid-state NMR spectroscopy. Catal Rev 39:345–393

    Article  CAS  Google Scholar 

  95. Olsbye U, Bjørgen M, Svelle S, Lillerud K-P, Kolboe S (2005) Mechanistic insight into the methanol-to-hydrocarbons reaction. Catal Today 106:108–111

    Article  CAS  Google Scholar 

  96. Chen D, Moljord K, Holmen A (2012) A methanol to olefins review: diffusion, coke formation and deactivation SAPO type catalysts. Microporous Mesoporous Mater 164:239–250

    Article  CAS  Google Scholar 

  97. Haw JF, Goguen PW, Xu T, Skloss TW, Song W, Wang Z (1998) In situ NMR investigations of heterogeneous catalysis with samples prepared under standard reaction conditions. Angew Chem Int Ed 37:948–949

    Article  CAS  Google Scholar 

  98. Olah GA, Gupta B, Farina M, Felberg JD, Ip WM, Husain A, Karpeles R, Lammertsma K, Melhotra AK, Trivedi NJ (1985) Electrophilic reactions at single bonds. 20. Selective monohalogenation of methane over supported acidic or platinum metal catalysts and hydrolysis of methyl halides over.gamma.-alumina-supported metal oxide/hydroxide catalysts: a feasible path for the oxidative conversion of methane into methyl alcohol/dimethyl ether. J Am Chem Soc 107:7097–7105

    Article  CAS  Google Scholar 

  99. Xu T, Barich DH, Goguen PW, Song W, Wang Z, Nicholas JB, Haw JF (1998) Synthesis of a benzenium ion in a zeolite with use of a catalytic flow reactor. J Am Chem Soc 120:4025–4026

    Article  CAS  Google Scholar 

  100. Song W, Nicholas JB, Haw JF (2001) A persistent carbenium ion on the methanol-to-olefin catalyst HSAPO-34: acetone shows the way. J Phys Chem B 105:4317–4323

    Article  CAS  Google Scholar 

  101. Song W, Nicholas JB, Haw JF (2001) Acid-base chemistry of a carbenium ion in a zeolite under equilibrium conditions: verification of a theoretical explanation of carbenium ion stability. J Am Chem Soc 123:121–129

    Article  CAS  Google Scholar 

  102. Song W, Nicholas JB, Sassi A, Haw JF (2002) Synthesis of the heptamethylbenzenium cation in zeolite-beta: in situ NMR and theory. Catal Lett 81:49–53

    Article  CAS  Google Scholar 

  103. Bjørgen M, Bonino F, Kolboe S, Lillerud K-P, Zecchina A, Bordiga S (2003) Spectroscopic evidence for a persistent benzenium cation in zeolite H-beta. J Am Chem Soc 125:15863–15868

    Article  CAS  Google Scholar 

  104. Bjørgen M (2004) The methanol-to-hydrocarbons reaction: insight into the reaction mechanism from [C-12]benzene and [C-13]methanol coreactions over zeolite H-beta. J Catal 221:1–10

    Article  CAS  Google Scholar 

  105. Bjørgen M, Joensen F, Lillerud KP, Olsbye U, Svelle S (2009) The mechanisms of ethene and propene formation from methanol over high silica H-ZSM-5 and H-beta. Catal Today 142:90–97

    Article  CAS  Google Scholar 

  106. Li J, Wei Y, Chen J, Tian P, Su X, Xu S, Qi Y, Wang Q, Zhou Y, He Y, Liu Z (2012) Observation of heptamethylbenzenium cation over SAPO-type molecular sieve DNL-6 under real MTO conversion conditions. J Am Chem Soc 134:836–839

    Article  CAS  Google Scholar 

  107. Xu S, Zheng A, Wei Y, Chen J, Li J, Chu Y, Zhang M, Wang Q, Zhou Y, Wang J, Deng F, Liu Z (2013) Direct observation of cyclic carbenium ions and their role in the catalytic cycle of the methanol-to-olefin reaction over chabazite zeolites. Angew Chem Int Ed 52:11564–11568

    Article  CAS  Google Scholar 

  108. Li J, Wei Y, Xu S, Tian P, Chen J, Liu Z (2014) Heptamethylbenzenium cation formation and the correlated reaction pathway during methanol-to-olefins conversion over DNL-6. Catal Today 226:47–51

    Article  CAS  Google Scholar 

  109. Svelle S, Olsbye U, Joensen F, Bjørgen M (2007) Conversion of methanol to alkenes over medium- and large-pore acidic zeolites: steric manipulation of the reaction intermediates governs the ethene/propene product selectivity. J Phys Chem C 111:17981–17984

    Article  CAS  Google Scholar 

  110. Hunger M, Horvath T (1995) A new MAS NMR probe for in situ investigations of hydrocarbon conversion on solid catalysts under continuous-flow conditions. J Chem Soc Chem Commun 14:1423–1424

    Article  Google Scholar 

  111. Hunger M (1996) Multinuclear solid-state NMR studies of acidic and non-acidic hydroxyl protons in zeolites. Solid State Nucl Magn Reson 6:1–29

    Article  CAS  Google Scholar 

  112. Hunger M, Horvath T (1996) Adsorption of methanol on bronsted acid sites in zeolite H-ZSM-5 investigated by multinuclear solid-state NMR spectroscopy. J Am Chem Soc 118:12302–12308

    Article  CAS  Google Scholar 

  113. Seiler M, Schenk U, Hunger M (1999) Conversion of methanol to hydrocarbons on zeolite HZSM-5 investigated by in situ MAS NMR spectroscopy under flow conditions and on-line gas chromatography. Catal Lett 62:139–145

    Article  CAS  Google Scholar 

  114. Wang W, Seiler M, Weitkamp J, Hunger M, Ivanova II (2001) In situ stopped-flow (SF) MAS NMR spectroscopy: a novel NMR technique applied for the study of aniline methylation on a solid base catalyst. Chem Commun 15:1362–1363

    Article  CAS  Google Scholar 

  115. Seiler M, Wang W, Hunger M (2001) Local structure of framework aluminum in zeolite H-ZSM-5 during conversion of methanol investigated by in situ NMR spectroscopy. J Phys Chem B 105:8143–8148

    Article  CAS  Google Scholar 

  116. Hunger M, Seiler M, Buchholz A (2001) In situ MAS NMR spectroscopic investigation of the conversion of methanol to olefins on silicoaluminophosphates SAPO-34 and SAPO-18 under continuous flow conditions. Catal Lett 74:61–68

    Article  CAS  Google Scholar 

  117. Wang W, Seiler M, Ivanova II, Sternberg U, Weitkamp J, Hunger M (2002) Formation and decomposition of N, N, N-trimethylanilinium cations on zeolite H-Y investigated by in situ stopped-flow MAS NMR spectroscopy. J Am Chem Soc 124:7548–7554

    Article  CAS  Google Scholar 

  118. Buchholz A, Wang W, Xu M, Arnold A, Hunger M (2002) Thermal stability and dehydroxylation of Bronsted acid sites in silicoaluminophosphates H-SAPO-11, H-SAPO-81 H-SAPO-31, and H-SAPO-34 investigated by multi-nuclear solid-state NMR spectroscopy. Microporous Mesoporous Mater 56:267–278

    Article  CAS  Google Scholar 

  119. Buchholz A, Wang W, Arnold A, Xu M, Hunger M (2003) Successive steps of hydration and dehydration of silicoaluminophosphates H-SAPO-34 and H-SAPO-37 investigated by in situ CF MAS NMR spectroscopy. Microporous Mesoporous Mater 57:157–168

    Article  CAS  Google Scholar 

  120. Arstad B, Kolboe S (2001) The reactivity of molecules trapped within the SAPO-34 cavities in the methanol-to-hydrocarbons reaction. J Am Chem Soc 123:8137–8138

    Article  CAS  Google Scholar 

  121. Arstad B, Kolboe S (2001) Methanol-to-hydrocarbons reaction over SAPO-34: molecules confined in the catalyst cavities at short time on stream. Catal Lett 71:209–212

    Article  CAS  Google Scholar 

  122. Svelle S, Kolboe S, Olsbye U, Swang O (2003) A theoretical investigation of the methylation of methylbenzenes and alkenes by halomethanes over acidic zeolites. J Phys Chem B 107:5251–5260

    Article  CAS  Google Scholar 

  123. Arstad B, Kolboe S, Swang O (2004) Theoretical study of protonated xylenes: ethene elimination and H, C-scrambling reactions. J Phys Org Chem 17:1023–1032

    Article  CAS  Google Scholar 

  124. Bjorgen M, Olsbye U, Svelle S, Kolboe S (2004) Conversion of methanol to hydrocarbons: the reactions of the heptamethylbenzenium cation over zeolite H-beta. Catal Lett 93:37–40

    Article  CAS  Google Scholar 

  125. Arstad B, Kolboe S, Swang O (2005) Theoretical study of the heptamethylbenzenium ion: intramolecular isomerizations and C2, C3, C4 alkene elimination. J Phys Chem A 109:8914–8922

    Article  CAS  Google Scholar 

  126. Svelle S, Aravinthan S, Bjorgen M, Lillerud KP, Kolboe S, Dahl IM, Olsbye U (2006) The methyl halide to hydrocarbon reaction over H-SAPO-34. J Catal 241:243–254

    Article  CAS  Google Scholar 

  127. Teketel S, Skistad W, Benard S, Olsbye U, Lillerud KP, Beato P, Svelle S (2012) Shape selectivity in the conversion of methanol to hydrocarbons: the catalytic performance of one-dimensional 10-ring zeolites: ZSM-22, ZSM-23, ZSM-48, and EU-1. ACS Catal 2:26–37

    Article  CAS  Google Scholar 

  128. Bleken F, Skistad W, Barbera K, Kustova M, Bordiga S, Beato P, Lillerud KP, Svelle S, Olsbye U (2011) Conversion of methanol over 10-ring zeolites with differing volumes at channel intersections: comparison of TNU-9, IM-5, ZSM-11 and ZSM-5. Phys Chem Chem Phys 13:2539–2549

    Article  CAS  Google Scholar 

  129. Olsbye U, Saure OV, Muddada NB, Bordiga S, Lamberti C, Nilsen MH, Lillerud KP, Svelle S (2011) Methane conversion to light olefins – how does the methyl halide route differ from the methanol to olefins (MTO) route? Catal Today 171:211–220

    Article  CAS  Google Scholar 

  130. Sommer L, Krivokapić A, Svelle S, Lillerud KP, Stöcker M, Olsbye U (2011) Enhanced catalyst performance of zeolite SSZ-13 in the methanol to olefin reaction after neutron irradiation. J Phys Chem C 115:6521–6530

    Article  CAS  Google Scholar 

  131. Svelle S, Sommer L, Barbera K, Vennestrom PNR, Olsbye U, Lillerud KP, Bordiga S, Pan YH, Beato P (2011) How defects and crystal morphology control the effects of desilication. Catal Today 168:38–47

    Article  CAS  Google Scholar 

  132. Olsbye U, Svelle S, Bjørgen M, Beato P, Janssens TVW, Joensen F, Bordiga S, Lillerud KP (2012) Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity. Angew Chem Int Ed 51:5810–5831

    Article  CAS  Google Scholar 

  133. Kumar P, Thybaut JW, Svelle S, Olsbye U, Marin GB (2013) Single-event microkinetics for methanol to olefins on H-ZSM-5. Ind Eng Chem Res 52:1491–1507

    Article  CAS  Google Scholar 

  134. Westgård Erichsen M, Svelle S, Olsbye U (2013) H-SAPO-5 as methanol-to-olefins (MTO) model catalyst: towards elucidating the effects of acid strength. J Catal 298:94–101

    Article  CAS  Google Scholar 

  135. Xu T, White JL (2004) Crystalline silicoaluminophosphate molecular sieve as catalyst in converting oxygenate feedstock to olefin compositions, includes integrated hydrocarbon co-catalyst. US Patent 6,743,747, 1 Jun 2004

    Google Scholar 

  136. Xu T, White JL (2004) Crystalline silicoaluminophosphate molecular sieve as catalyst in converting oxygenate feedstock to olefin compositions, includes integrated hydrocarbon co-catalyst. US Patent 6,734,330, 11 May 2004

    Google Scholar 

  137. Song WG, Fu H, Haw JF (2001) Supramolecular origins of product selectivity for methanol-to-olefin catalysis on HSAPO-34. J Am Chem Soc 123:4749–4754

    Article  CAS  Google Scholar 

  138. Ehresmann JO, Wang W, Herreros B, Luigi D-P, Venkatraman T, Song W, Nicholas JB, Haw JF (2002) Theoretical and experimental investigation of the effect of proton transfer on the Al-27 MAS NMR line shapes of zeolite-adsorbate complexes: an independent measure of solid acid strength. J Am Chem Soc 124:10868–10874

    Article  CAS  Google Scholar 

  139. Sassi A, Wildman MA, Haw JF (2002) Reactions of butylbenzene isomers on zeolite HBeta: methanol-to-olefins hydrocarbon pool chemistry and secondary reactions of olefins. J Phys Chem B 106:8768–8773

    Article  CAS  Google Scholar 

  140. Sullivan RF, Sieg RP, Langlois GE, Egan CJ (1961) A new reaction that occurs in the hydrocracking of certain aromatic hydrocarbons. J Am Chem Soc 83:1156–1160

    Article  CAS  Google Scholar 

  141. Wei YX, Zhang DZ, Liu ZM, Su BL (2007) Mechanistic elucidation of chloromethane transformation over SAPO-34 using deuterated probe molecule: a FTIR study on the surface evolution of catalyst. Chem Phys Lett 444:197–201

    Article  CAS  Google Scholar 

  142. Dessau RM, Lapierre RB (1982) On the mechanism of methanol conversion to hydrocarbons over HZSM-5. J Catal 78:136–141

    Article  CAS  Google Scholar 

  143. Dessau RM (1986) On the H-ZSM-5 catalyzed formation of ethylene from methanol or higher olefins. J Catal 99:111–116

    Article  CAS  Google Scholar 

  144. Lesthaeghe D, De Sterck B, Van Speybroeck V, Marin GB, Waroquier M (2007) Zeolite shape-selectivity in the gem-methylation of aromatic hydrocarbons. Angew Chem Int Ed 46:1311–1314

    Article  CAS  Google Scholar 

  145. Hemelsoet K, Nollet A, Vandichel M, Lesthaeghe D, VanSpeybroeck V, Waroquier M (2009) The effect of confined space on the growth of naphthalenic species in a chabazite-type catalyst: a molecular modeling study. ChemCatChem 1:373–378

    Article  CAS  Google Scholar 

  146. Vandichel M, Lesthaeghe D, Mynsbrugge JV, Waroquier M, Van Speybroeck V (2010) Assembly of cyclic hydrocarbons from ethene and propene in acid zeolite catalysis to produce active catalytic sites for MTO conversion. J Catal 271:67–78

    Article  CAS  Google Scholar 

  147. Chen D, Rebo H, Moljord K, Holmen A (1997) Influence of coke deposition on selectivity in zeolite catalysis. Ind Eng Chem Res 36:3473–3479

    Article  CAS  Google Scholar 

  148. Chen D, Moljord K, Fuglerud T, Holmen A (1999) The effect of crystal size of SAPO-34 on the selectivity and deactivation of the MTO reaction. Microporous Mesoporous Mater 29:191–203

    Article  CAS  Google Scholar 

  149. Bjørgen M (2003) Coke precursor formation and zeolite deactivation: mechanistic insights from hexamethylbenzene conversion. J Catal 215:30–44

    Article  CAS  Google Scholar 

  150. Jiang Y, Huang J, Reddy Marthala V, Ooi YS, Weitkamp J, Hunger M (2007) In situ MAS NMR-UV/Vis investigation of H-SAPO-34 catalysts partially coked in the methanol-to-olefin conversion under continuous-flow conditions and of their regeneration. Microporous Mesoporous Mater 105:132–139

    Article  CAS  Google Scholar 

  151. Qi G, Xie Z, Yang W, Zhong S, Liu H, Zhang C, Chen Q (2007) Behaviors of coke deposition on SAPO-34 catalyst during methanol conversion to light olefins. Fuel Process Technol 88:437–441

    Article  CAS  Google Scholar 

  152. Mores D, Stavitski E, Kox MH, Kornatowski J, Olsbye U, Weckhuysen BM (2008) Space- and time-resolved in-situ spectroscopy on the coke formation in molecular sieves: methanol-to-olefin conversion over H-ZSM-5 and H-SAPO-34. Chem Eur J 14:11320–11327

    Article  CAS  Google Scholar 

  153. Kustova M, Holm MS, Christensen CH, Pan YH, Beato P, Janssens TVW, Joensen F, Nerlov J (2008) Synthesis and characterization of mesoporous ZSM-5 core-shell particles for improved catalytic properties. In: Gedeon A, Massiani P, Babonneau F, (eds) Zeolites and related materials: trends, targets and challenges, proceedings of the 4th international feza conference, Paris (France). vol 174, pp. 117–122

    Google Scholar 

  154. Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R (2009) Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature 461:246–249

    Article  CAS  Google Scholar 

  155. Guisnet M, Costa L, Ribeiro FR (2009) Prevention of zeolite deactivation by coking. J Mol Catal A Chem 305:69–83

    Article  CAS  Google Scholar 

  156. Wragg DS, Johnsen RE, Balasundaram M, Norby P, Fjellvag H, Gronvold A, Fuglerud T, Hafizovic J, Vistad OB, Akporiaye D (2009) SAPO-34 methanol-to-olefin catalysts under working conditions: a combined in situ powder X-ray diffraction, mass spectrometry and Raman study. J Catal 268:290–296

    Article  CAS  Google Scholar 

  157. Schulz H (2010) “Coking” of zeolites during methanol conversion: basic reactions of the MTO-, MTP- and MTG processes. Catal Today 154:183–194

    Article  CAS  Google Scholar 

  158. Kim J, Choi M, Ryoo R (2010) Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-to-hydrocarbon conversion process. J Catal 269:219–228

    Article  CAS  Google Scholar 

  159. Mores D, Kornatowski J, Olsbye U, Weckhuysen BM (2011) Coke formation during the methanol-to-olefin conversion: in situ microspectroscopy on individual H-ZSM-5 crystals with different bronsted acidity. Chem Eur J 17:2874–2884

    Article  CAS  Google Scholar 

  160. Mores D, Stavitski E, Verkleij SP, Lombard A, Cabiac A, Rouleau L, Patarin J, Simon-Masseron A, Weckhuysen BM (2011) Core-shell H-ZSM-5/silicalite-1 composites: bronsted acidity and catalyst deactivation at the individual particle level. Phys Chem Chem Phys 13:15985–15994

    Article  CAS  Google Scholar 

  161. Wang F, Luo M, Xiao WD, Cheng XW, Long YC (2011) Coking behavior of a submicron MFI catalyst during ethanol dehydration to ethylene in a pilot-scale fixed-bed reactor. Appl Catal A Gen 393:161–170

    Article  CAS  Google Scholar 

  162. Inagaki S, Shinoda S, Kaneko Y, Takechi K, Komatsu R, Tsuboi Y, Yamazaki H, Kondo JN, Kubota Y (2013) Facile fabrication of ZSM-5 zeolite catalyst with high durability to coke formation during catalytic cracking of paraffins. ACS Catal 3:74–78

    Article  CAS  Google Scholar 

  163. Na K, Choi M, Park W, Sakamoto Y, Terasaki O, Ryoo R (2010) Pillared MFI zeolite nanosheets of a single-unit-cell thickness. J Am Chem Soc 132:4169–4177

    Article  CAS  Google Scholar 

  164. Verheyen E, Jo C, Kurttepeli M, Vanbutsele G, Gobechiya E, Korányi TI, Bals S, Van Tendeloo G, Ryoo R, Kirschhock CEA, Martens JA (2013) Molecular shape-selectivity of MFI zeolite nanosheets in n-decane isomerization and hydrocracking. J Catal 300:70–80

    Article  CAS  Google Scholar 

  165. Cho K, Na K, Kim J, Terasaki O, Ryoo R (2012) Zeolite synthesis using hierarchical structure-directing surfactants: retaining porous structure of initial synthesis gel and precursors. Chem Mater 24:2733–2738

    Article  CAS  Google Scholar 

  166. Cho HS, Ryoo R (2012) Synthesis of ordered mesoporous MFI zeolite using CMK carbon templates. Microporous Mesoporous Mater 151:107–112

    Article  CAS  Google Scholar 

  167. Na K, Choi M, Ryoo R (2013) Recent advances in the synthesis of hierarchically nanoporous zeolites. Microporous Mesoporous Mater 166:3–19

    Article  CAS  Google Scholar 

  168. Vora BV, Marker TL, Barger PT, Nilson HR, Kvisle S, Fuglerud T (1997) Economic route for natural gas conversion to ethylene and propylene. Stud Surf Sci Catal 107:87–98

    Article  CAS  Google Scholar 

  169. Chen JQ, Bozzano A, Glover B, Fuglerud T, Kvisle S (2005) Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process. Catal Today 106:103–107

    Article  CAS  Google Scholar 

  170. Keil FJ (1999) Methanol-to-hydrocarbons: process technology. Microporous Mesoporous Mater 29:49–66

    Article  CAS  Google Scholar 

  171. Coute NP, Kuechler KH, Chrisholm PN, Vaughn SN, Lattner JR, Kuechler WL (2004) US Patent 6673978, 2004

    Google Scholar 

  172. Kioes S, Liebner W (2004) Methane-the promising career of a humble molecule. J Nat Gas Chem 13:71–78

    CAS  Google Scholar 

  173. Tian P, Wei Y, Ye M, Liu Z (2015) Methanol to olefins (MTO): from fundamentals to commercialization. ACS Catal 5:1922–1938

    Article  CAS  Google Scholar 

  174. Zhang H (2008) Advances in process research of methanol to light olefins. Chem React Eng Technol 24:178–182

    CAS  Google Scholar 

  175. Lok BM, Messina CA, Patton RL, Gajek RT, Cannan TR, Flanigen EM (1984) New family of silico-alumino-phosphate molecular sieves – prepd. by hydrothermal crystallisation are useful for sepn. and as catalysts US Patent 4440871, 3 Apr 1984

    Google Scholar 

  176. Liang J, Li HY, Zhao SQ, Guo WG, Wang RH, Ying ML (1990) Characteristics and performance of SAPO-34 catalyst for methanol-to-olefin conversion. Appl Catal 64:31–40

    Article  CAS  Google Scholar 

  177. Liu Z, Qi Y (2006) The industrial experimental research of methanol to olefins technology. Bull Chin Acad Sci 21:406–408

    CAS  Google Scholar 

  178. Xin Y, Qi P, Duan X, Lin H, Yuan Y (2013) Enhanced performance of Zn-Sn/HZSM-5 catalyst for the conversion of methanol to aromatics. Catal Lett 143:798–806

    Article  CAS  Google Scholar 

  179. Wang P, Yang D, Hu J, Xu JA, Lu G (2013) Synthesis of SAPO-34 with small and tunable crystallite size by two-step hydrothermal crystallization and its catalytic performance for MTO reaction. Catal Today 212:62.e1–62.e8

    CAS  Google Scholar 

  180. Nesterenko N, Donk SV, Minoux D, Dath JP (2013) US Patent 2013, vol 0204061 A1

    Google Scholar 

  181. Martins J, Birot E, Guillon E, Lemos F, Ribeiro FR, Magnoux P, Laforge S (2013) Sodium exchange over H-EU-1. zeolite. Part II: Catalytic properties. Microporous Mesoporous Mater 171:238–245

    Article  CAS  Google Scholar 

  182. Pushparaj H, Mani G, Muthiahpillai P, Velayutham M, Park Y-K, Choi WC, Jang HT (2013) Effects of crystallinity of ZSM-5 zeolite on para-selective tert-butylation of ethylbenzene. Chin J Catal 34:294–304

    Article  CAS  Google Scholar 

  183. Yang S-T, Kim J-Y, Chae H-J, Kim M, Jeong S-Y, Ahn W-S (2012) Microwave synthesis of mesoporous SAPO-34 with a hierarchical pore structure. Mater Res Bull 47:3888–3892

    Article  CAS  Google Scholar 

  184. Viswanadham N, Saxena SK, Kumar J, Sreenivasulu P, Nandan D (2012) Catalytic performance of nano crystalline H-ZSM-5 in ethanol to gasoline (ETG) reaction. Fuel 95:298–304

    Article  CAS  Google Scholar 

  185. Bleken FL, Chavan S, Olsbye U, Boltz M, Ocampo F, Louis B (2012) Conversion of methanol into light olefins over ZSM-5 zeolite: strategy to enhance propene selectivity. Appl Catal A 447:178–185

    Article  CAS  Google Scholar 

  186. Álvaro-Muñoz T, Márquez-Álvarez C, Sastre E (2012) Use of different templates on SAPO-34 synthesis: effect on the acidity and catalytic activity in the MTO reaction. Catal Today 179:27–34

    Article  CAS  Google Scholar 

  187. Wang P, Lv A, Hu J, Xu JA, Lu G (2011) In situ synthesis of SAPO-34 grown onto fully calcined kaolin microspheres and its catalytic properties for the MTO reaction. Ind Eng Chem Res 50:9989–9997

    Article  CAS  Google Scholar 

  188. Salmasi M, Fatemi S, Taheri Najafabadi A (2011) Improvement of light olefins selectivity and catalyst lifetime in MTO reaction; using Ni and Mg-modified SAPO-34 synthesized by combination of two templates. J Ind Eng Chem 17:755–761

    Article  CAS  Google Scholar 

  189. Möller K, Bein T (2011) Crystallization and porosity of ZSM-23. Microporous Mesoporous Mater 143:253–262

    Article  CAS  Google Scholar 

  190. Dimitrov L, Mihaylov M, Hadjiivanov K, Mavrodinova V (2011) Catalytic properties and acidity of ZSM-12 zeolite with different textures. Microporous Mesoporous Mater 143:291–301

    Article  CAS  Google Scholar 

  191. Wang B, Tian Z, Li P, Wang L, Xu Y, Qu W, He Y, Ma H, Xu Z, Lin L (2010) A novel approach to synthesize ZSM-23 zeolite involving N, N-dimethylformamide. Microporous Mesoporous Mater 134:203–209

    Article  CAS  Google Scholar 

  192. Teketel S, Olsbye U, Lillerud K-P, Beato P, Svelle S (2010) Selectivity control through fundamental mechanistic insight in the conversion of methanol to hydrocarbons over zeolites. Microporous Mesoporous Mater 136:33–41

    Article  CAS  Google Scholar 

  193. Lee JH, Park MB, Lee JK, Min H-K, Song MK, Hong SB (2010) Synthesis and characterization of ERI-type UZM-12 zeolites and their methanol-to-olefin performance. J Am Chem Soc 132:12971–12982

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiguo Song or Zhongmin Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Song, W., Wei, Y., Liu, Z. (2016). Chemistry of the Methanol to Olefin Conversion. In: Xiao, FS., Meng, X. (eds) Zeolites in Sustainable Chemistry. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47395-5_9

Download citation

Publish with us

Policies and ethics