Advertisement

The Geometry of Chuck Hoberman

As the Basis for the Development of Dynamic Experimental Structures
  • Márcia Anaf
  • Harris Nogueira de Camargo Ana Lúcia
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 527)

Abstract

The cognitive-theoretical foundation referring to teach drawing as a way of thinking, as well as the construction of the environment by means of drawing using transforming geometries and the formal and para-formal computational process, creating unusual geometries through generative design processes and methodologies, can be seen as some of the main possibilities in exploring dynamic experimental structures for an Adaptive Architecture. This article presents the development of a model for articulated facades, inspired by Hoberman’s Tessellates, and his Adaptive Building Initiative (ABI) project to develop facades models that respond in real time to environmental changes. In addition, we describe an experiment based on the retractable structures, inspired by Hoberman’s work and experimentations. Solutions for responsive facades can offer more flexible architectural solutions providing better use of natural light and contributing to saving energy. Using Rhinoceros and the Grasshopper for modeling and test the responsiveness, the parametric model was created to simulate geometric panels of hexagonal grids that would open and close in reaction to translational motion effects, regulating the amount of light that reaches the building.

Keywords

Parametric architecture Hoberman’s Tessellates Adaptive Building Initiative (ABI) Articulated facades Complex geometries Retractable structures Retractable polyhedra 

References

  1. 1.
    Hoberman, C.: Mechanical invention through computation: mechanism basics. In: MIT Class 6.S080 (AUS) (2013)Google Scholar
  2. 2.
    Hoberman, C.: Mechanical invention through computation: expanding structures 2D. In: MIT Class 6.S080 (AUS) (2013)Google Scholar
  3. 3.
  4. 4.
    Hoberman Associates-Transformable Design. www.hoberman.com
  5. 5.
  6. 6.
    Buro Happold Engineering. www.burohappold.com
  7. 7.
    Adaptive Building Initiative. www.adaptivebuildings.com/
  8. 8.
    Adaptive Building Initiative. www.adaptivebuildings.com/city-of-justice.html
  9. 9.
    Hoberman Associates-Transformable Design. www.hoberman.com/news/hoberman-premieres-hoberman-morph.html
  10. 10.
  11. 11.
  12. 12.
    Hoberman Associates-Transformable Design. www.hoberman.com/portfolio.php
  13. 13.
    Science Centre AHHAA. www.ahhaa.ee/en/ahhaa_tartu
  14. 14.
    Barbosa, L.L.: Design sem fronteiras: a relação entre o nomadismo e a sustentabilidade. Tese de Doutorado. Orientadora: Maria Cecília Loschiavo dos Santos. Faculdade de Arquitetura e Urbanismo da Universidade de São Paulo (FAUUSP) (2008)Google Scholar
  15. 15.
    Zuk, W., Clark, R.H.: Kinetic Architecture. Van Nostrand Reinhold Company, New York (1970)Google Scholar
  16. 16.
    Barbosa, L.L.: Design sem Fronteiras: A Relação entre o Nomadismo e a Sustentabilidade. São Paulo: EDUSP/FAPESP (2012)Google Scholar
  17. 17.
    Kronenburg, R.: Flexible: Architecture that Responds to Change. Laurence King, London (2007)Google Scholar
  18. 18.
    Vassão, C.A.: Arquitetura Móvel: propostas que colocaram o sedentarismo em questão. Dissertação de Mestrado. Orientador: Prof. Doutor Carlos Roberto Zibel Costa. Faculdade de Arquitetura e Urbanismo da Universidade de São Paulo (FAUUSP) (2002)Google Scholar
  19. 19.
    Barbosa, L.L.: O design transformável através das criações da Hoberman Associates. In: 9º Seminário Internacional NUTAU 2012. BRICS e a Habitação Coletiva Sustentável. NUTAU, São Paulo (2012)Google Scholar
  20. 20.
    Rocha, D.C.: Desenvolvimento de estruturas articuláveis de madeira. Dissertação de Mestrado. Orientador: Ana Lucia Nogueira de Camargo Harris. Faculdade de Engenharia Civil, Arquitetura e Urbanismo da Universidade Estadual de Campinas (UNICAMP) (2010)Google Scholar
  21. 21.
    Fundación Emilio Pérez Piñero. www.perezpinero.org
  22. 22.
    Chuck Hoberman-Transformable: Building structures that change themselves - AAG 2012 - organized by RFR-HD. https://vimeo.com/51749695
  23. 23.
    Snyder, R.: Buckminster Fuller: Scénario Pour One Autobiographie. Éditions Images Modernes, Paris (2004)Google Scholar
  24. 24.
    Jensen, F., Pellegrino, S.: Expandable “Blob” Structures. J. Int. Assoc. Shell Spat. Struct. (IASS) 46(3), 151–158 (2005)Google Scholar
  25. 25.
    Anaf, M., Harris, A.L.N.C.: Transformable design: an approach between mathematics and arts. In: Geometria’s 2014 Proceedings (2014) Google Scholar
  26. 26.
    You, Z., Chen, Y.: Motion Structures: Deployable Structural Assemblies of Mechanisms. Spon Press, New York (2011). HardcoverGoogle Scholar
  27. 27.
    Anaf, M.: A dimensão criativa do Desenho como processo gerativo. Dissertação de Mestrado. Orientador: Prof. Doutor Caio Adorno Vassão. Universidade Fernando Pessoa (UFP) (2012)Google Scholar
  28. 28.
    Negroponte, N.: Soft Architecture Machines. MIT Press, Cambridge (1975)Google Scholar
  29. 29.
    Terzidis, K.: Algorithmic Architecture. Architectural Press, Oxford (2006)Google Scholar
  30. 30.
    Hoberman, C., Schwitter, C.: Adaptive structures: building for performance and sustainability. Design Intelligence. Trends, Strategies, Research for Design Professionals. DesignIntelligence. N.p., 11 August 2008.www.di.net/articles/adaptive-structures-building-for-performance-and-sustainability/
  31. 31.
    Vassão, C.A.: Metadesign, ferramentas, estratégias e ética para a complexidade. Blucher, São Paulo (2010)Google Scholar
  32. 32.
    Morin, E.: Introdução ao pensamento complexo. Sulina, Porto Alegre (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Márcia Anaf
    • 1
  • Harris Nogueira de Camargo Ana Lúcia
    • 1
  1. 1.University of CampinasCampinasBrazil

Personalised recommendations