Advertisement

Pattern, Cognition and Spatial Information Processing

Representations of the Spatial Layout of Architectural Design with Spatial-Semantic Analytics
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 527)

Abstract

In this paper, we review and extend the idea of Alexander’s “pattern language”, especially from the viewpoints of complexity theories, information systems, and human-computer interaction, to explore spatial cognition-based design representations for “intelligent and adaptive/interactive environment” in architecture and urban planning. We propose a theoretic framework of design patterns “with spatial information processing”, and attempt to incorporate state-of-the-art computational methods of information visualization/visual analytics into the conventional CAAD approaches. Focused on the spatial-semantic analytics, together with abstract syntactic pattern representation, by using “spatial-semantic aware” graph grammar formalization, i.e., Spatial Graph Grammars (SGG), the relevant models, algorithms and tool are proposed. We testify our theoretic framework and computational tool VEGGIE (a Visual Environment of Graph Grammar Induction Engineering) by using actual architectural design works (spatial layout exemplars of a small office building and the three house projects by Frank Lloyd Wright) as study cases, so as to demonstrate our proposed approach for practical applications. The results are discussed and further research is suggested.

Keywords

Pattern language Complex adaptive systems Spatial cognition Design representations Spatial information processing Artificial intelligence Visual language Spatial graph grammars (SGG) Spatial-semantic analytics 

Notes

Acknowledgements

The author Kai Liao wants to thank his former PhD supervisor Prof. Michael Batty, Prof. Paul Longley at CASA, UCL, and Prof. Kristian Lindgren, Dr. Claes Andersson at the Complex Systems Group, Chalmers Uni of Tech, Sweden.

References

  1. 1.
    Achten, H., Oxman, R., Bax, T.: Typological knowledge acquisition through a schema of generic representations. In: Gero, J., Sudweeks, F. (eds.) Artificial Intelligence in Design 1998, pp. 191–207. Kluwer Academic Publishers, Dordrecht (1998)Google Scholar
  2. 2.
    Alexander, C.: A City is not a Tree, Design, vol. 206, pp. 46–55, February 1966Google Scholar
  3. 3.
    Alexander, C.: A Pattern Language. Oxford University Press, New York (1977)Google Scholar
  4. 4.
    Andersson, C.: Ontogeny and ontology in complex systems modeling. In: Albeverio, S., et al. (eds.) The Dynamics of Complex Urban Systems, pp. 43–58. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Andersson, C., Frenken, K., Hellervik, A.: A complex network approach to urban growth. Environ. Plan. A 38(10), 1941–1964 (2006)CrossRefGoogle Scholar
  6. 6.
    Andersson, C., Hellervik, A., Lindgren, A.: A spatial network explanation for a hierarchy of urban power laws. Phys. A 345(1–2), 227–244 (2005)CrossRefGoogle Scholar
  7. 7.
    Ates, K.L., Zhang, K.: Constructing VEGGIE: machine learning for context-sensitive graph grammars. In: Proceedings of 19th IEEE International Conference on Tools with Artificial Intelligence, pp. 456–463 (2007)Google Scholar
  8. 8.
    Barouni, F., Moulin, B.: A framework for qualitative representation and reasoning about spatiotemporal patterns. In: Hernandez, N., Jäschke, R., Croitoru, M. (eds.) ICCS 2014. LNCS, vol. 8577, pp. 79–92. Springer, Heidelberg (2014)Google Scholar
  9. 9.
    Batty, M., Longley, P.: Fractal Cities: A Geometry of Form and Function. Academic Press, London (1994)MATHGoogle Scholar
  10. 10.
    Batty, M.: Cities and Complexity. The MIT Press, Cambridge (2005)Google Scholar
  11. 11.
    Baybars, I., Eastman, C.M.: Enumerating architectural arrangements by generating their underlying graphs. Environ. Plan. B 7(3), 289–310 (1980)CrossRefGoogle Scholar
  12. 12.
    Beetz, J., van Leeuwen, J., de Vries, B.: IfcOWL: A case of transforming EXPRESS schemas into ontologies. Artif. Intell. Eng. Des. Anal. Manuf. 23(01), 89–101 (2009)CrossRefGoogle Scholar
  13. 13.
    Coyne, R.D., Gero, J.S.: Design knowledge and sequential plans. Environ. Plan. 12(4), 401–418 (1985)CrossRefGoogle Scholar
  14. 14.
    Do, E.Y.L., Gross, M.D.: Thinking with diagrams in architectural design. Artif. Intell. Rev. 15(1–2), 135–149 (2001)MATHCrossRefGoogle Scholar
  15. 15.
    Do, E.Y.L., Gross, M.D., Neiman, B., Zimring, C.: Intentions in and relations among design drawings. Des. Stud. 21(5), 483–503 (2000)CrossRefGoogle Scholar
  16. 16.
    Eastman, C.M.: The evolution of CAD: integrating multiple representations. Build. Environ. 26(1), 17–23 (1991)CrossRefGoogle Scholar
  17. 17.
    Eastman, C.M.: Representations for space planning. Commun. ACM 13(4), 242–250 (1970)CrossRefGoogle Scholar
  18. 18.
    Eastman, C.M.: Explorations of the cognitive processes in design, Technical Report, Carnegie Mellon University (1968)Google Scholar
  19. 19.
    Fu, K.S., Swain, P.H.: On syntactic pattern recognition. In: Tou, J.T. (ed.) Computer and Information Sciences-1969, Software Engineering, vol. 2, pp. 155–182. Academic Press, New York (1971)Google Scholar
  20. 20.
    Gamma, E., Johnson, R., Johnson, J., Helm, R.: Design Patterns: Elements of Reusable Object-oriented Software. Addison-Wesley, Reading (1994)Google Scholar
  21. 21.
    Goldschmidt, G., Porter, W.L. (eds.): Design Representation. Springer, London (2004). (with the reviews by N.J. Habraken and C.M. Eastman)Google Scholar
  22. 22.
    Grasl, T., Economou, A.: Palladian graphs: using a graph grammar to automate the palladian grammar. In: Future cities: 28th eCAADe Conference Proceedings, pp. 275–283 (2010)Google Scholar
  23. 23.
    Gross, M.D.: Indexing visual databases of designs with diagrams. In: Koutamanis, A., Timmermans, H., Vermeulen, I. (eds.) Visual Databases in Architecture. Avebury, Aldershot (1995)Google Scholar
  24. 24.
    Habraken, N.J.: The Structure of the Ordinary: Form and Control in the Built Environment. The MIT Press, Cambridge (1998)Google Scholar
  25. 25.
    Habraken, N.J.: The Appearance of the Form. Awater, Cambridge (1985)Google Scholar
  26. 26.
    Haken, H., Portugali, J.: Information Adaptation: The Interplay Between Shannon Information and Semantic Information in Cognition. SpringerBriefs in Complexity, p. XIV. Springer, Heidelberg (2015)Google Scholar
  27. 27.
    Harary, F.: The city is a tree; the real world is not a tree! Geogr. Anal. 43(4), 347–357 (2011)CrossRefGoogle Scholar
  28. 28.
    Terry, K., Stiny, G.: Classical and non-classical computation. Inf. Technol. 5(4), 355–372 (2001)Google Scholar
  29. 29.
    Kong, J., Barkol, O., Bergman, R., Pnueli, A., Schein, S., Zhang, K., Zhao, C.: Web interface interpretation using graph grammars. IEEE Trans. SMC-Part C 42(4), 590–602 (2012)Google Scholar
  30. 30.
    Kong, J., Ates, L., Zhang, K.: Adaptive mobile interfaces through grammar induction. In: Proceedings of 20th IEEE International Conference on Tools with Artificial Intelligence, pp. 133–140 (2008)Google Scholar
  31. 31.
    Kong, J., Zhang, K., Zeng, X.: Spatial graph grammars for graphical user interfaces. ACM Trans. Comput.-Hum. Interact. 13(2), 268–307 (2006)CrossRefGoogle Scholar
  32. 32.
    Liao, K., Han, C.Y.: Collective pavilions: a generative architectural modeling for traditional Chinese pagoda. In: Martens, B., Brown, A. (eds.) The CAAD Futures 2005: Learning from the Past, pp. 129–138. Oesterreichischer Kunst- und Kulturverlag, Vienna (2005)Google Scholar
  33. 33.
    Liao, K., Li, D.: An analysis of traditional Chinese architecture and garden design from the viewpoint of chaos theory and fractal geometry. J. Wuhan Tech. Univ. Surv. Mapp. (WTUSM) 23–3, 189–203 (1997)Google Scholar
  34. 34.
    Liao, K.: From Feng-shui to Chaotic/Fractal architecture: transformation of urban space design concept of Chinese Shan-shui (mountain and water, landscape) city. In: Huang, G., et al. (eds.) Proceedings of International Symposium on Sustainable Development of Human Settlements in Mountainous Regions, pp. 77–91. Science Press, Beijing (1997)Google Scholar
  35. 35.
    Lindgren, K: Information theory for complex systems. Lecture Notes (Jan 2003), Department of Physical Resource Theory, Chalmers and Göteborg University (2003)Google Scholar
  36. 36.
    Lindgren, K., Moore, C., Nordahl, M.: Complexity of two-dimensional patterns. J. Stat. Phys. 91(5–6), 909–951 (1998)MATHMathSciNetCrossRefGoogle Scholar
  37. 37.
    Lindgren, K., Nordahl, M.G.: Evolutionary dynamics of spatial games. Physica D: Nonlinear Phenom. 75(1), 292–309 (1994)MATHCrossRefGoogle Scholar
  38. 38.
    March, L., Steadman, P.: The Geometry of Environment: An introduction to Spatial Organization in Design. MIT Press, Cambridge (1974)Google Scholar
  39. 39.
    Niemeijer, R., de Vries, B., Beetz, J.: Freedom through constraints: user-oriented architectural design. Adv. Eng. Inform. 28(2014), 28–36 (2014)CrossRefGoogle Scholar
  40. 40.
    Oxman, R.: The thinking eye: visual re-cognition in design emergence. Des. Stud. 23, 143–158 (2002)CrossRefGoogle Scholar
  41. 41.
    Oxman, R.: Design media for the cognitive designer. Autom. Constr. 9, 337–346 (2000)CrossRefGoogle Scholar
  42. 42.
    Simon, H.: The Sciences of the Artificial. The MIT Press, Cambridge (1969)Google Scholar
  43. 43.
    Stiny, G.: Shape: Talking About Seeing and Doing. The MIT Press, Cambridge (2006)Google Scholar
  44. 44.
    de Vries, B., Jessurun, A., Segers, N., Achten, H.: Word graphs in architectural design. AI Eng. Des. Anal. Manuf. 19(4), 277–288 (2005)Google Scholar
  45. 45.
    Yessios, C.: Formal language for site planning. In: Eastman, C.M. (ed.) Spatial Synthesis in Computer-Aided Building Design, pp. 147–183. Applied Science Publishers, London (1975)Google Scholar
  46. 46.
    Zhang, K.: Visual Languages and Applications. Springer, Heidelberg (2007)MATHCrossRefGoogle Scholar
  47. 47.
    Zhao, C., Kong, J., Dong, J., Zhang, K.: Design pattern evolution and verification using graph transformation. In: Proceedings of 40th Annual Hawaii International Conference on System Sciences, pp. 290–296 (2007)Google Scholar
  48. 48.
    Zhao, C., Kong, J., Dong, J., Zhang, K.: Pattern-based design evolution using graph transformation. J. Vis. Lang. Comput. 18(4), 378–398 (2007)CrossRefGoogle Scholar
  49. 49.
    Zlatev, J.: Spatial Semantics. Oxford University Press, Oxford (2010)CrossRefGoogle Scholar
  50. 50.
    Zlatev, J.: The Semiotic Hierarchy: Life, Consciousness, Sign and Language. J. Cogn. Semiot. 2009(4), 169–200 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Kai Liao
    • 1
  • Bauke de Vries
    • 1
  • Jun Kong
    • 2
  • Kang Zhang
    • 3
  1. 1.Eindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.North Dakota State UniversityFargoUSA
  3. 3.University of Texas at DallasDallasUSA

Personalised recommendations