Advertisement

Facilitating Fire and Smoke Simulation Using Building Information Modeling

  • Chengde Wu
  • Saied Zarrinmehr
  • Mohammad Rahmani Asl
  • Mark J. Clayton
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 527)

Abstract

CFAST is a two-zone model which simulates fire growth and smoke transport. Manually modeling a building using CFAST user interface is a time consuming and error-prone process. In addition, the limitations in CFAST structure impede data transfer between CFAST and BIM (Building Information Modeling). In this research, we identified major limitations of CFAST, proposed solutions to the limitations, and developed a system for data interchange between BIM and CFAST. This greatly facilitated fire and smoke simulation. We further developed a visualization module to visualize the simulation results to overcome the problems when using SmokeView, an application developed by NIST (National Institute of Standards and Technology). A pilot test is conducted using this system. The simulation process was done in just a few minutes. This is expected to help architects to design buildings safer from building fires, and help students in learning building safety and fire related building codes.

Keywords

Fire simulation Building information modeling (BIM) CFAST Building fire evacuation 

Notes

Acknowledgements

Funding of his research is provided by Natural Science Fund of China (grant No. 51308377).

References

  1. 1.
    Tunstall, G.: Managing the Building Design Process. Routledge, London (2006)Google Scholar
  2. 2.
    WFSC: World Fire Statistics Centre Bulletin, vol. 28 (2012). https://www.genevaassociation.org/media/186703/ga2012-fire28.pdf. Accessed
  3. 3.
    Moghtaderi, B., Novozhilov, V., Fletcher, D.F., Kent, J.H.: A new correlation for bench-scale piloted ignition data of wood. Fire Saf. J. 29(1), 41–59 (1997). doi: 10.1016/S0379-7112(97)00004-0 CrossRefGoogle Scholar
  4. 4.
    Ohlemiller, T.J., Summerfield, M.: Radiative ignition of polymeric materials in oxygen/nitrogen mixtures. Symp. (Int.) Combust. 13(1), 1087–1094 (1971). doi: 10.1016/S0082-0784(71)80106-6 CrossRefGoogle Scholar
  5. 5.
    Smith, W.K., King, J.B.: Surface temperatures of materials during radiant heating to ignition. J. Fire Flammability 1(4), 272–288 (1970)Google Scholar
  6. 6.
    Kishore, K.: Mohan Das, K.: Flammability index of polymeric materials. Colloid Polym. Sci. 258(1), 95–98 (1980)CrossRefGoogle Scholar
  7. 7.
    Babrauskas, V., Lawson, J.R., Walton, W.D., Twilley, W.H.: Upholstered furniture heat release rates measured with a furniture calorimeter. US Department of Commerce, National Bureau of Standards (1982). http://www.nist.gov/manuscript-publication-search.cfm?pub_id=106922. Accessed
  8. 8.
    Lawson, J.R., Walton, W.D., Twilley, W.H.: Fire Performance of Furnishings as Measured in the NBS Furniture Calorimeter: Part I. US Department of Commerce, National Bureau of Standards (1984). http://fire.nist.gov/bfrlpubs/fire84/art002.html. Accessed
  9. 9.
    Mouritz, A.P., Mathys, Z., Gibson, A.G.: Heat release of polymer composites in fire. Compos. A Appl. Sci. Manuf. 37(7), 1040–1054 (2006). doi: 10.1016/j.compositesa.2005.01.030 CrossRefGoogle Scholar
  10. 10.
    Chow, W.K., Leung, C.W.: Survey on partition walls commonly used in Hong Kong and estimation of the heat release rates during fire. Archit. Sci. Rev. 44(4), 379–390 (2001). doi: 10.1080/00038628.2001.9696918 CrossRefGoogle Scholar
  11. 11.
    Buch, R.R.: Rates of heat release and related fire parameters for silicones. Fire Saf. J. 17(1), 1–12 (1991). doi: 10.1016/0379-7112(91)90009-N MathSciNetCrossRefGoogle Scholar
  12. 12.
    Harada, T.: Time to ignition, heat release rate and fire endurance time of wood in cone calorimeter test. Fire Mater. 25(4), 161–167 (2001). doi: 10.1002/fam.766 CrossRefGoogle Scholar
  13. 13.
    Tran, H.C., White, R.H.: Burning rate of solid wood measured in a heat release rate calorimeter. Fire Mater. 16(4), 197–206 (1992). doi: 10.1002/fam.810160406 CrossRefGoogle Scholar
  14. 14.
    Zhu, J., Morgan, A.B., Lamelas, F.J., Wilkie, C.A.: Fire properties of Polystyrene–Clay nanocomposites. Chem. Mater. 13(10), 3774–3780 (2001). doi: 10.1021/cm000984r CrossRefGoogle Scholar
  15. 15.
    Huggett, C.: Estimation of rate of heat release by means of oxygen consumption measurements. Fire Mater. 4(2), 61–65 (1980). doi: 10.1002/fam.810040202 CrossRefGoogle Scholar
  16. 16.
    Thornton, W.: The relation of oxygen to the heat of combustion of organic compounds. Phil. Mag. J. Sci. 33, 196–203 (1917)CrossRefGoogle Scholar
  17. 17.
    Janssens, M.L.: Measuring rate of heat release by oxygen consumption. Fire Technol. 27(3), 234–249 (1991). doi: 10.1007/BF01038449 CrossRefGoogle Scholar
  18. 18.
    Quintiere, J.G.: Growth of Fire in Building Compartments. Fire Standards and Safety. In: ASTM STP 614, pp. 131 – 167 (1977)Google Scholar
  19. 19.
    Quintiere, J.G., Harkleroad, M.T.: New concepts for measuring flame spread properties. fire safety: science and engineering. In: ASTM STP 882, American Society for Testing and Materials, pp. 239–267 (1985)Google Scholar
  20. 20.
    Hasemi, Y.: Thermal modeling of upward wall flame spread. fire safety science. In: Proceedings of the First International Symposium (1986)Google Scholar
  21. 21.
    Cheney, N.P., Bary, G.A.V.: The propagationof mass conflagration in a standing eucalyptus forest by the spotting process. In: Mass Fire Symposium, vol. 1 (1969)Google Scholar
  22. 22.
    Cheney, N., Gould, J.: Fire growth and acceleration. Int. J. Wildland Fire 7(1), 1–5 (1997)CrossRefGoogle Scholar
  23. 23.
    Heskestad, G., Delichatsios, M.A.: The initial convective flow in fire. Symp. (Int.) Combust. 17(1), 1113–1123 (1979). doi: 10.1016/S0082-0784(79)80106-X CrossRefGoogle Scholar
  24. 24.
    Larson, D.W., Viskanta, R.: Transient combined laminar free convection and radiation in a rectangular enclosure. J. Fluid Mech. 78(01), 65–85 (1976). doi: 10.1017/S0022112076002334 MATHCrossRefGoogle Scholar
  25. 25.
    Peacock, R.D., Jones, W.W., Bukowski, R.W.: Verification of a model of fire and smoke transport. Fire Saf. J. 21(2), 89–129 (1993). doi: 10.1016/0379-7112(93)90038-R CrossRefGoogle Scholar
  26. 26.
    Zukoski, E.E., Kubota, T.: Two-layer modeling of smoke movement in building fires. Fire Mater. 4(1), 17–27 (1980). doi: 10.1002/fam.810040103 CrossRefGoogle Scholar
  27. 27.
    Jones, W.W., Forney, G.P.: Improvement in predicting smoke movement in compartmented structures. Fire Saf. J. 21(4), 269–297 (1993). doi: 10.1016/0379-7112(93)90017-K CrossRefGoogle Scholar
  28. 28.
    He, Y., Beck, V.: Smoke spread experiment in a multi-storey building and computer modelling. Fire Saf. J. 28(2), 139–164 (1997). doi: 10.1016/S0379-7112(96)00081-1 CrossRefGoogle Scholar
  29. 29.
    Birky, M.M., Halpin, B.M., Caplan, Y.H., Fisher, R.S., McAllister, J.M., Dixon, A.M.: Fire fatality study. Fire Mater. 3(4), 211–217 (1979). doi: 10.1002/fam.810030406 CrossRefGoogle Scholar
  30. 30.
    Terrill, J.B., Montgomery, R.R., Reinhardt, C.F.: Toxic gases from fires. Science 200(4348), 1343–1347 (1978). doi: 10.1126/science.208143 CrossRefGoogle Scholar
  31. 31.
    Alarie, Y.: Toxicity of Fire Smoke. Crit. Rev. Toxicol. 32(4), 259–289 (2002). doi: 10.1080/20024091064246 CrossRefGoogle Scholar
  32. 32.
    Bernard, T.E., Duker, J.: Modeling carbon monoxide uptake during work. Am. Ind. Hyg. Assoc. J. 42(5), 361–364 (1981). doi: 10.1080/15298668191419884 CrossRefGoogle Scholar
  33. 33.
    Esposito, F.M., Alarie, Y.: Inhalation toxicity of carbon monoxide and hydrogen cyanide gases released during the thermal decomposition of polymers. J. Fire Sci. 6(3), 195–242 (1988). doi: 10.1177/073490418800600303 CrossRefGoogle Scholar
  34. 34.
    Yan, Z., Holmstedt, G.: CFD and experimental studies of room fire growth on wall lining materials. Fire Saf. J. 27(3), 201–238 (1996). doi: 10.1016/S0379-7112(96)00044-6 CrossRefGoogle Scholar
  35. 35.
    Xue, H., Ho, J.C., Cheng, Y.M.: Comparison of different combustion models in enclosure fire simulation. Fire Saf. J. 36(1), 37–54 (2001). doi: 10.1016/S0379-7112(00)00043-6 CrossRefGoogle Scholar
  36. 36.
    Karlsson, B.: Modeling fire growth on combustible lining materials in enclosures (dissertation). Lund University (1992). http://lup.lub.lu.se/record/1669903. Accessed
  37. 37.
    Hadjisophocleous, G.V., Mccartney, C.J.: Guidelines for the use of CFD simulations for fire and smoke modeling. ASHRAE Transactions. American Society of Heating, Refrigerating and Air-conditioning Engineers 111(2), pp. 583–594 (2005). http://cat.inist.fr/?aModele=afficheN&cpsidt=18780300. Accessed
  38. 38.
    Mouilleau, Y., Champassith, A.: CFD simulations of atmospheric gas dispersion using the fire dynamics simulator (FDS). J. Loss Prev. Process Ind. 22(3), 316–323 (2009). doi: 10.1016/j.jlp.2008.11.009 CrossRefGoogle Scholar
  39. 39.
    Peacock, R.D., Forney, G.P., Reneke, P.A., Portier, R.W., Jones, W.W.: CFAST, the consolidated model of fire growth and smoke transport. National Institute of Standards and Technology Gaithersburg, MD (1993). http://fire.nist.gov/bfrlpubs/fire93/art001.html. Accessed
  40. 40.
    NIST: Fire Growth and Smoke Transport Modeling with CFAST (2010). http://www.nist.gov/el/fire_research/cfast.cfm. Accessed
  41. 41.
    Hokugo, A., Yung, D., Hadjisophocleous, G.: Experiments to validate the nrcc smoke movement model for fire risk-cost assessment. Fire Saf. Sci. 4, 805–816 (1994). doi: 10.3801/IAFSS.FSS.4-805 CrossRefGoogle Scholar
  42. 42.
    Bailey, J.L., Tatem, P.A.: Validation of Fire/Smoke Spread Model (CFAST) Using Ex-USS SHADWELL Internal Ship Conflagration Control (ISCC) Fire Tests. No. NRL/MR/6180–95-7781. Naval Research Lab, Washington DC (1995)Google Scholar
  43. 43.
    Peacock, R.D., Reneke, P.A.: Verification and validation of selected fire models for nuclear power plant applications, Volume 5: Consolidated Fire Growth and Smoke Transport Model (CFAST). NUREG-1824. US Nuclear Regulatory Commission, Washington, DC (2007)Google Scholar
  44. 44.
    Bailey, J.L., et al.: Development and validation of corridor flow submodel for CFAST. J. Fire. Prot. Eng. 12(3), 139–161 (2002)CrossRefGoogle Scholar
  45. 45.
    BIM forum: Level Of Development Specification (2013). http://bimforum.org/wp-content/uploads/2013/08/2013-LOD-Specification.pdf. Accessed
  46. 46.
    Peacock, R.D., Reneke, P.A. Forney, G.P.: CFAST – Consolidated Model of Fire Growth and Smoke Transport (Version 6) User’s Guide. NIST SP 1041r1. National Institute of Standards and Technology (2013). http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1041r1.pdf. Accessed
  47. 47.
    Floyd, J.: Comparison of CFAST and FDS for Fire Simulation with the HDR T51 and T52 Tests. US Department of Commerce, Technology Administration, National Institute of Standards and Technology (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Chengde Wu
    • 1
  • Saied Zarrinmehr
    • 1
  • Mohammad Rahmani Asl
    • 1
  • Mark J. Clayton
    • 1
  1. 1.Texas A&M UniversityCollege StationUSA

Personalised recommendations