Skip to main content

Squiggly Lines and Random Dots—You Can Fit Anything with a Nonlinear Model

  • Chapter
  • First Online:
  • 572 Accesses

Abstract

This chapter describes the advances made in methodological aspects of modelling skin permeability by considering artificial intelligence, fuzzy logic and advanced Machine Learning methods and how they have been applied to skin absorption. It reviews the often-stunted contribution to the field of these methods and describes the advantages such methods have produced in recent years. In addition, the chapter also considers problems with these methods, particularly the lack of use in the skin permeability field due to the need for specific computational expertise that is not normally associated with the development of quantitative structure–permeability models, and discusses how such lack of widespread use can be tackled. In addition, as this chapter describes models that often fall into the “black box” category and do not therefore present a readily usable algorithm, an explicit output methods used to discern mechanistic aspects of the skin permeability process are discussed. These include feature selection methods, which have been applied to skin permeability and which have shown the non-independence and interrelationship of key descriptors on each other and that the need for an algorithm with discrete expressions may be of limited value.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The Kubinyi function is a statistical parameter closely related to the Fisher ratio (F). Whereas the Fisher ratio (F) is often sensitive to changes in small d values, and poorly sensitive to changes in large d values, the Kubinyi function avoids these issues. In general, a larger Kubinyi values suggest a better linear equation. The Akaike’s information criterion is an indicator of the relative quality of a model for a particular set of data and thus is used in model selection.

References

  • Abraham MH, Martins F, Mitchell RC (1997) Algorithms for skin permeability using hydrogen bond descriptors: the problem of steroids. J Pharm Pharmacol 49:858–865

    Article  CAS  PubMed  Google Scholar 

  • Agatonovic-Kustric S, Tucker IG, Schmierer D (1999) Solid state assay of ranitidine hydrochloride as a bulk drug and as active ingredient in tablets using DRIFT spectroscopy with ANNs. Pharm Res 16:1479–1484

    Google Scholar 

  • Agatonovic-Kustrin S, Beresford R (2000) Basic concepts of artificial neural network (ANN) modelling and its application in pharmaceutical research. J Pharm Biomed Anal 22:717–727

    Article  CAS  PubMed  Google Scholar 

  • Agatonovic-Kustrin S, Beresford R, Pauzi A, Yusof M (2001) ANN modeling of the penetration across a polydimethylsiloxane membrane from theoretically derived molecular descriptors. J Pharm Biomed Anal 26:241–254

    Article  CAS  PubMed  Google Scholar 

  • Alany RG, Agatonovic-Kustrin S, Rades T, Tucker IG (1999) Use of artificial neural network to predict quaternary phase systems from limited experimental data. J Pharm Biomed Anal19:443–452

    Google Scholar 

  • Ashrafi P, Moss GP, Wilkinson SC, Davey N, Sun Y (2015) The application of machine learning to the modelling of percutaneous absorption: an overview and guide. SAR QSAR Environ Res 26:181–204

    Article  CAS  PubMed  Google Scholar 

  • Baert B, Deconinck E, van Gele M, Slodicka M, Stoppie P, Bode S, Slegers G, van der Heyden Y, Lambert J, Beetens J, de Spiegeleer B (2007) Transdermal penetration behaviour of drugs: CART-clustering, QSPR and selection of model compounds. Bioorg Med Chem 15:6943–6955

    Article  CAS  PubMed  Google Scholar 

  • Barratt MD (1995) Quantitative structure–activity relationships for skin permeability. Toxicol Vitro 9:27–37

    Article  CAS  Google Scholar 

  • Bourquin J, Schmidt H, Van Hoogevest P, Leuen-Berger H (1997) Application of artificial neural networks (ANN) in the development of solid dosage forms. Pharm Dev Technol 2:111–121

    Google Scholar 

  • Bourquin J, Schmidt H, Van Hoogevest P, Leuen-Berger H (1998) Comparison of artificial neural networks (ANN) with classical modelling technologies using different experimental designs and data from a galenical study on a solid dosage form. Eur J Pharm Sci 7:1–12

    Article  Google Scholar 

  • Brown SL, Rossi JE (1989) A simple method for estimating dermal absorption of chemicals in water. Chemosphere 19:1989–2001

    Article  CAS  Google Scholar 

  • Brown MB, Lau C-H, Lim ST, Sun Y, Davey N, Moss GP, Yoo S-H, de Muynck C (2012) An evaluation of the potential of linear and nonlinear skin permeation models for the prediction of experimentally measured percutaneous drug absorption. J Pharm Pharmacol 64:566–577

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekaran SK, Michaels AS, Campbell PS, Shaw JE (1976) Scopolamine permeation through human skin in vitro. AIChE J 22:828–832

    Article  CAS  Google Scholar 

  • Chen LJ, Lian GP, Han LJ (2007) Prediction of human skin permeability using artificial neural network (ANN) modelling. Acta Pharmacol Sin 28:591–600

    Article  CAS  PubMed  Google Scholar 

  • Cronin MTD, Schultz TW (2003) Pitfalls in QSAR. J Mol Struct 622:39–51

    Article  CAS  Google Scholar 

  • Danick Y, Miller MA, Jaworska J, Kasting GB (2013) Design and performance of a spreadsheet-based model for estimating bioavailability of chemicals from dermal exposure. Adv Drug Deliver Rev 65:221–236

    Google Scholar 

  • Degim T, Hadgraft J, Illbasmis S, Ozkan Y (2003) Prediction of skin penetration using artificial neural network (ANN) modelling. J Pharm Sci 92:656–664

    Article  CAS  PubMed  Google Scholar 

  • Fan T, Takayama K, Hattori Y, Maitani Y (2004) Formulation optimisation of paclitaxel carried by PEGylated emulsions based on artificial neural network. Pharm Res 21:1692–1697

    Article  CAS  PubMed  Google Scholar 

  • Fedors RF (1974) A method for estimating both the solubility parameters and molar volumes of liquids. Poly Eng Sci 14:147–154

    Article  CAS  Google Scholar 

  • Fiserova-Bergerova V, Pierce JT, Droz PO (1990) Dermal absorption potential of industrial chemicals: criteria for skin notation. Am J Ind Med 17:617–635

    Article  CAS  PubMed  Google Scholar 

  • Flynn GL (1990) Physicochemical determinants of skin absorption. In: Gerrity TR, Henry CJ (eds) Principles of route-to-route extrapolation for risk assessment. Elsevier, New York, pp 93–127

    Google Scholar 

  • George K (2005) A two-dimensional mathematical model of non-linear dual-sorption of percutaneous drug absorption. Biomed Eng Online 4:40

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • George K, Kubota K, Twizell EH (2004) A two-dimensional mathematical model of percutaneous drug absorption. Biomed Eng Online 3:18

    Google Scholar 

  • Guy RH, Potts RO (1993) Penetration of industrial chemicals across the skin: a predictive model. Am J Ind Med 23:711–719

    Article  CAS  PubMed  Google Scholar 

  • Keshwani DR, Jones DD, Brand RM (2005) Tagaki-Sugeno fuzzy modelling of skin permeability. Cutan Ocul Toxicol 24:149–163

    Article  CAS  PubMed  Google Scholar 

  • Kia S, Setayeshi S, Shamsaei M, Kia M (2013) Computer-aided diagnosis (CAD) of the skin disease based an intelligent classification of sonogram using neural network. Neural Comput Appl 22:1049–1062

    Article  Google Scholar 

  • Kubota K, Twizell EH (1992) A nonlinear numerical model of percutaneous drug absorption. Math Biosci 108:157–178

    Article  CAS  PubMed  Google Scholar 

  • Kubota K, Koyama E, Yasuda K (1991) A random walk method for percutaneous drug absorption pharmacokinetics: application to repeated administration of a therapeutic timolol patch. J Pharm Sci 80:752–756

    Article  CAS  PubMed  Google Scholar 

  • Kubota K, Koyama E, Twizell EH (1993) Dual sorptionmodel for the nonlinear percutaneous permeation kinetics of timolol. J Pharm Sci 82:1205–1208

    Article  CAS  PubMed  Google Scholar 

  • Lam LT, Sun Y, Davey N, Adams RG, Prapopoulou M, Brown MB, Moss GP (2010) The application of feature selection to the development of Gaussian process models for percutaneous absorption. J Pharm Pharmacol 62:738–749

    CAS  PubMed  Google Scholar 

  • Lien EJ, Gao H (1995) QSAR analysis of skin permeability of various drugs in man as compared to in vivo and in vitro studies in rodents. Pharm Res 4:583–587

    Google Scholar 

  • Lim CW, Fujiwara S, Yamashita F, Hashida M (2002) Prediction of human skin permeability using a combination of molecular orbital calculations and artificial neural network. Bio Pharm Bull 25:361–366

    Google Scholar 

  • McKone TE, Howd RA (1992) Estimating dermal uptake of nonionic organic chemicals from water and soil: I unified fugacity-based models for risk assessments. Risk Anal 12:543–557

    Article  CAS  PubMed  Google Scholar 

  • Milik M, Kolinski A, Skolnick J (1995) Neural network system for the evaluation of side-chain packing in protein structures. Protein Eng 8:225–236

    Article  CAS  PubMed  Google Scholar 

  • Mitragotri S, Anissimov YG, Bunge AL, Frasch HF, Guy RH, Hadgraft J, et al (2011) Mathematical models of skin permeability: an overview. Int J Pharm 418:115–129

    Google Scholar 

  • Moss GP, Cronin MTD (2002) Quantitative structure-permeability relationships for percutaneous absorption: re-analysis of steroid data. Int J Pharm 238:105–109

    Article  CAS  PubMed  Google Scholar 

  • Moss GP, Gullick DR, Cox PA, Alexander C, Ingram MJ, Smart JD, Pugh WJ (2006) Design, synthesis and characterisation of captopril prodrugs for enhanced percutaneous absorption. J Pharm Pharmacol 58:167–177

    Article  CAS  PubMed  Google Scholar 

  • Moss GP, Dearden JC, Patel H, Cronin MTD (2002) Quantitative structure-permeability relationships (QSPRs) for percutaneous absorption. Toxicol In Vitro 16:299–317

    Google Scholar 

  • Moss GP, Sun Y, Prapopoulou M, Davey N, Adams R, Pugh WJ, Brown MB (2009) The application of Gaussian processes in the prediction of percutaneous absorption. J Pharm Pharmacol 61:1147–1153

    Article  CAS  PubMed  Google Scholar 

  • Moss GP, Sun Y, Wilkinson SC, Davey N, Adams R, Martin GP, Prapopoulou M, Brown MB (2011) The application and limitations of mathematical models across mammalian skin and poldimethylsiloxane membranes. J Pharm Pharmacol 63:1411–1427

    Article  CAS  PubMed  Google Scholar 

  • Neely B, Madihally S, Robinson RJ, Gasem K (2009) Nonlinear quantitative structure–property relationship modeling of skin permeation coefficient. J Pharm Sci 98:4069–4084

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pannier AK, Brand RM, Jones DD (2003) Fuzzy modelling of skin permeability coefficients. Pharm Res 20:143–148

    Article  CAS  PubMed  Google Scholar 

  • Patel H, ten Berge W, Cronin MTD (2002) Quantitative structure-activity relationships (QSARs) for prediction of skin permeation of exogenous chemicals. Chemosphere 48:603–613

    Article  CAS  PubMed  Google Scholar 

  • Potts RO, Guy RH (1992) Predicting skin permeability. Pharm Res 9:663–669

    Article  CAS  PubMed  Google Scholar 

  • Pugh WJ, Roberts MS, Hadgraft J (1996) Epidermal permeability—penetrant structure relationships 3: the effect of hydrogen bonding interactions and molecular size on diffusion across the stratum corneum. Int J Pharm 138:149–165

    Article  CAS  Google Scholar 

  • Roberts MS, Pugh WJ, Hadgraft J, Watkinson AC (1995) Epidermal permeability-penetrant structure relationships 1: an analysis of methods of predicting penetration of monofunctional solutes from aqueous solutions. Int J Pharm 126:219–233

    Article  CAS  Google Scholar 

  • Roberts MS, Pugh WJ, Hadgraft J (1996) Epidermal permeability: penetrant structure relationships 2: the effect of H-bonding groups in penetrants on their diffusion through the stratum corneum. Int J Pharm 132:23–32

    Article  CAS  Google Scholar 

  • Roberts MS, Anissimov YG, Gonsalvez RA (1999) Mathematical models in percutaneous absorption. In: Bronaugh RL, Maibach HI (eds) Percutaneous absorption, 3rd edn. Marcel Dekker, Inc. CRC Press, New York, pp 3–56

    Google Scholar 

  • Roberts MS, Cross SE, Pellet MA (2002) Skin transport. In: Walters KA (ed.) Dermatological and transdermal formulations. Marcel Dekker, New York, pp 89–195

    Google Scholar 

  • Robinson PJ (1993) A composite model for predicting dermal penetration in vivo. In: Human and environmental safety division. The Proctor & Gamble Company, Cincinati. Personal communication, cited in Wilschut A, ten Berge WF, Robinson PJ, McKone TE (1995) Estimating skin permeation: the validation of five mathematical skin permeation models, vol 30. Chemosphere, Los Angeles, pp 1275–1296

    Google Scholar 

  • So SS, Karplus M (1996) Evolutionary optimization in quantitative structure-activity relationship: an application of genetic neural networks. J Med Chem 39:1521–1530

    Article  CAS  PubMed  Google Scholar 

  • So SS, Karplus M (1997a) Three-dimensional quantitative structure-activity relationships from molecular similarity matrices and genetic neural networks 1: methods and validations. J Med Chem 40:4347–4359

    Article  CAS  PubMed  Google Scholar 

  • So SS, Karplus M (1997b) Three-dimensional quantitative structure-activity relationships from molecular similarity matrices and genetic neural networks 2: applications. J Med Chem 40:4360–4371

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Rao X, Peng L, Xu D (1997) Prediction of protein supersecondary structures based on the artificial neural network method. Protein Eng 10:763–769

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Moss GP, Prapodopolou M, Davey N, Adams R, Brown MB (2008) Predictions of skin penetration using machine learning methods. In: Giannotti F, Gunopulos D, Turini F, Zaniolo C, Ramakrishnan N, Wu XD (eds) Proceedings of 8th IEEE international conference on data mining, (ICDM 2008). IEEE, Pisa, ISBN 978-0-7695-3502-9

    Google Scholar 

  • Sun Y, Moss GP, Davey N, Adams R, Brown MB (2011) The application of stochastic machine learning methods in the prediction of skin penetration. Appl Soft Comput 11:2367–2375

    Article  Google Scholar 

  • Takahara J, Takayama K, Nagai T (1998) Multi-objective simultaneous optimization technique based on an artificial neural network in sustained release formulations. J. Cont. Relat 49:11–20

    Article  Google Scholar 

  • Willett P (1995) Genetic algorithms in molecular recognition and design. Trends Biotechnol 13:516–521

    Article  CAS  PubMed  Google Scholar 

  • Williams AC (2003) Transdermal and topical drug delivery. The Pharmaceutical Press, London

    Google Scholar 

  • Wilschut A, ten Berge WF, Robinson PJ, McKone TE (1995) Estimating skin permeation. In: The validation of five mathematical skin permeation models, vol 30. Chemosphere, Los Angeles, pp 1275–1296

    Google Scholar 

  • Wu CH (1997) Artificial neural networks for molecular sequence analysis. Comput Chem 21:237–256

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary P. Moss .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moss, G.P., Gullick, D.R., Wilkinson, S.C. (2015). Squiggly Lines and Random Dots—You Can Fit Anything with a Nonlinear Model. In: Predictive Methods in Percutaneous Absorption. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47371-9_7

Download citation

Publish with us

Policies and ethics