Skip to main content

Applications of Nanotechnology in Next-Generation Nonvolatile Memories

  • Chapter
  • First Online:
Book cover Introduction to Nano

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

With the conventional MOS Non-Volatile Memory (NVM) devices nearing its limits due to scaling issues; many new devices, advanced structures and materials are being explored for their memory applications. The advanced MOSFET NVMs like the nanocrystal embedded gate dielectric Double Gate (DG) MOS, FinFET and Gate all around (GAA) MOSFET are expected to be integrated in the 3-Dimensional ICs by 2015. Also another class of NVMs which operate based on rather different phenomena than charge trapping (as in MOS devices) has come to the fore in recent years. This new generation of NVMs include the Resistive RAM (RRAM), Ferro FET (FeFET), Spin Torque Transfer (STT)-RAM, CNT/Graphene based memories, CNT mass transport and NEMS NVM etc. Such devices depend on processes like resistive switching, ferroelectric hysteresis, spin-torque transfer and tunneling magnetoresistance modulation, nano manipulation, cantilever actuation and so on. These new NVMs offer considerably faster switching, low power and denser and longer data storage capabilities than the present MOS NVMs. Also the advances in nanofabrication techniques have brought about possibilities of realizing complex multi-layer and 3-D structures with great accuracy. All these developments in materials and design are all set to revolutionize the memory technology. The underlying physics and the quantum effects in such next generation NVM devices are a truly intriguing field of study as well. Various models have been proposed and many new ones are being put forward to study the electron tunneling currents nanocrystal embedded gate advanced MOSFET NVMs, the filament formation mechanisms in RRAM, the spin torque transfer in MRRAM and the various other physical phenomena in such devices. This Chapter provides a comprehensive and up-to date review on the recent developments in the field of NVM devices, discussing new memory devices, architectures and novel data storage mechanisms, with in depth discussions regarding the physics based modeling of such memory cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.E. Thompson et al., A 90-nm logic technology featuring strained-silicon. IEEE Trans. Electron Dev. 51(11), 1790–1797 (2004)

    Article  Google Scholar 

  2. J.T. Kedzierski, A Decade of nanoelectronics journey from classical bulk CMOS to metal-gate FinFETs, in IEEE EDS DLT (Kolkata and personal communication) 17 Nov 2011

    Google Scholar 

  3. P. Cappelletti, C. Golla, P. Olivo, E. Zanoni (eds.), Flash Memories (Kluwer Academic, Boston, MA, 1999)

    Google Scholar 

  4. I.S. Stievano (ed.), Flash Memories (InTech, Rijeka, Croatia, 2011)

    Google Scholar 

  5. R. Micheloni, L. Crippa, A. Marelli (eds.), Inside NAND Flash Memories (Springer, New York, 2010)

    Google Scholar 

  6. A.K. Sharma, Semiconductor Memories: Technology, Testing and Reliability (Wiley, Hoboken, NJ, 1997)

    Google Scholar 

  7. G. Campardo, R. Micheloni, D. Novosel, VLSI-design of Non-Volatile Memories (Springer, Berlin, Heidelberg, 2005)

    Google Scholar 

  8. R. Bez, E. Camerlenghi, A. Modelli, A. Visconti, Introduction to flash memory. Proc. IEEE 91(4), 489–502 (2003)

    Article  Google Scholar 

  9. S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E.F. Crabbé, K. Chan, A silicon nanocrystals based memory. Appl. Phys. Lett. 68(10), 1377 (1996)

    Article  Google Scholar 

  10. J.-D. Choe, K.H. Yeo, Y.J. Ahn, J.J. Lee, Low voltage program/erase characteristics of Si nanocrystal memory with damascene gate FinFET on bulk Si wafer. J. Semicond. Technol. Sci 6(2), 68–73 (2006)

    Google Scholar 

  11. Y. Liu, T.P. Chen, C.Y. Ng, M.S. Tse, P. Zhao, Y.Q. Fu, S. Zhang, Random capacitance modulation due to charging/discharging in Si nanocrystals embedded in gate dielectric. Nanotechnology 16, 1119–1122 (2005)

    Article  Google Scholar 

  12. C.Y. Ng, T.P. Chen, L. Ding, M. Yang, J.I. Wong, P. Zhao, X.H. Yang, K.Y. Liu, M.S. Tse, A.D. Trigg, S. Fung, Influence of Si nanocrystal distributed in the gate oxide on the MOS capacitance. IEEE Trans. Electron Dev. 53, 730–736 (2006)

    Article  Google Scholar 

  13. C.Y. Ng, T.P. Chen, P. Zhao, L. Ding, Y. Liu, Electrical characteristics of Si nanocrystal distributed in a narrow layer in the gate oxide near the gate synthesized with very-low-energy ion beams. J. Appl. Phys. 99, 106105 (2006)

    Article  Google Scholar 

  14. C.Y. Ng, T.P. Chen, M. Yang, J.B. Yang, L. Ding, C.M. Li, A. Du, A. Trigg, Impact of programming mechanisms on the performance and reliability of nonvolatile memory devices based on Si nanocrystals. IEEE Trans. Electron Dev. 53, 663–667 (2006)

    Article  Google Scholar 

  15. C.Y. Ng, T.P. Chen, A. Du, A study of the influence of tunnel oxide thickness on the performance of flash memory based on ion-beam synthesized silicon nanocrystals. Phys. Stat. Sol. A 203(6), 1291–1295 (2006)

    Article  Google Scholar 

  16. M. Yang, T.P. Chen, Z. Liu, J.I. Wong, W.L. Zhang, S. Zhang, Y. Liu, Effect of annealing on charge transfer in Ge nanocrystal based nonvolatile memory structure. J. Appl. Phys. 106, 103701 (2009)

    Article  Google Scholar 

  17. R. Beyer, J.V. Borany, H. Burghardt, Microelectronic engineering interface and border trap relaxation in Si–SiO2 structures with Ge nanocrystals examined by transient capacitance spectroscopy. Microelectron. Eng. 86(7–9), 1859–1862 (2009)

    Article  Google Scholar 

  18. M. Yang, T.P. Chen, W. Zhu, J.I. Wong, S. Zhang, Comparison of charge storage behavior of electrons and holes in a continuous Ge Nanocrystal layer. Nanosci. Nanotechnol. Lett. 2, 7–10 (2010)

    Article  Google Scholar 

  19. W.K. Choi, W.K. Chim, Observation of memory effect in germanium nanocrystals embedded in an amorphous silicon oxide matrix of a metal–insulator–semiconductor structure. Appl. Phys. Lett. 80(11), 2014–2016 (2002)

    Article  Google Scholar 

  20. J.J. Lee, D.-L. Kwong, Metal nanocrystal memory with high-k tunneling barrier for improved data retention. IEEE Trans. Electron Dev. 52(4), 507–511 (2005)

    Article  Google Scholar 

  21. S.-W. Ryu, J.-W. Lee, J.-W. Han, S. Kim, Y.-K. Choi, Designed workfunction engineering of double-stacked metal nanocrystals for nonvolatile memory application. IEEE Trans. Electron Dev. 56(3), 377–382 (2009)

    Article  Google Scholar 

  22. W. Guan, S. Long, M. Liu, Z. Li, Y. Hu, Q. Liu, Fabrication and charging characteristics of MOS capacitor structure with metal nanocrystals embedded in gate oxide. J. Phys. D Appl. Phys. 40(9), 2754–2758 (2007)

    Article  Google Scholar 

  23. S.-W. Ryu, C.B. Mo, S.H. Hong, Y.-K. Choi, Nonvolatile memory characteristics of NMOSFET With Ag nanocrystals synthesized via a thermal decomposition process for uniform device distribution. IEEE Trans. Nanotechnol. 7(2), 145–150 (2008)

    Article  Google Scholar 

  24. C. Lee, J. Meteer, V. Narayanan, E.C. Kan, Self-assembly of metal nanocrystals on ultrathin oxide for nonvolatile memory applications. J. Electron. Mater. 34(1), 1–11 (2005)

    Article  Google Scholar 

  25. Y. Pei et al., MOSFET nonvolatile memory with a high-density tungsten nanodot floating gate formed by self-assembled nanodot deposition. Semicond. Sci. Technol. 24(4), 045022 (2009)

    Article  Google Scholar 

  26. P. Yeh, L. Chen, P. Liu, D. Wang, T. Chang, Metal nanocrystals as charge storage nodes for nonvolatile memory devices. Electrochimica Acta 52(8), 2920–2926 (2007)

    Article  Google Scholar 

  27. V. Mikhelashvili et al., Nonvolatile low-voltage memory transistor based on SiO2 tunneling and HfO2 blocking layers with charge storage in Au nanocrystals. Appl. Phys. Lett. 98(21), 212902 (2011)

    Article  Google Scholar 

  28. Y.-S. Lo, K.-C. Liu, C.-W. Cheng, J.-Y. Wu, C.-H. Hou, Field enhancement effect of nanocrystals in bandgap engineering of tunnel oxide for nonvolatile memory application. Appl. Phys. Lett. 94, 082901 (2009)

    Article  Google Scholar 

  29. R. Ang, T.P. Chen, M. Yang, J.I. Wong, M.D. Yi, The charge trapping and memory effect in SiO2 thin films containing Ge nanocrystals. J. Phys. D Appl. Phys. 43(1), 015102 (2010)

    Article  Google Scholar 

  30. http://www.03.ibm.com/press/us/en/pressrelease/22083.wss

  31. J.V. Borany et al., The formation of narrow nanocluster bands in Ge-implanted SiO2-layers. J. Appl. Phys. 43, 1159–1163 (1999)

    Google Scholar 

  32. S. Koliopoulou, P. Dimitrakis, D. Goustouridis, P. Normand, C. Pearson, M.C. Petty, H. Radamson, D. Tsoukalas, Metal nano-floating gate memory devices fabricated at low temperature. Microelectron. Eng. 83, 1563–1566 (2006)

    Article  Google Scholar 

  33. S.-S. Yim, M.-S. Lee, K.-S. Kim, K.-B. Kim, Formation of runanocrystals by plasma enhanced atomic layer deposition for nonvolatile memory applications. Appl. Phys. Lett. 89(9), 093115 (2006)

    Article  Google Scholar 

  34. J.J. Lee, D.-L. Kwong, Metal nanocrystal memory with high-tunneling barrier for improved data retention. IEEE Trans. Electron Dev. 52(4), 507–511 (2005)

    Article  Google Scholar 

  35. Y. Li, S. Liu, Using different work function nanocrystal materials to improve the retention characteristics of nonvolatile memory devices. Microelectron. J. 40(1), 92–94 (2009)

    Article  Google Scholar 

  36. T.-H. Hou, U. Ganguly, E.C. Kan, Programable molecular orbital states of C60 from integrated circuits. Appl. Phys. Lett. 89(25), 253113 (2006)

    Article  Google Scholar 

  37. T-H. Hou et al., in Device Research Conference, 2008 (Santa Barbara, CA, 23–25 June 2008), pp. 275–276

    Google Scholar 

  38. X.B. Lu, J.Y. Dai, Memory effects of carbon nanotubes as charge storage nodes for floating gate memory applications. Appl. Phys. Lett. 88(11), 113104 (2006)

    Article  Google Scholar 

  39. S. Yang, Q. Wang, M. Zhang, S. Long, J. Liu, Titanium–tungsten nanocrystals embedded in a SiO2/Al2O3 gate dielectric stack for low-voltage operation in non-volatile memory. Nanotechnology 21, 245201 (2010)

    Article  Google Scholar 

  40. L. Khomenkova, B.S. Sahu, A. Slaoui, F. Gourbilleau, Hf-based high-k materials for Si nanocrystal floating gate memories. Nanoscale Res. Lett. 6(1), 172 (2011)

    Article  Google Scholar 

  41. D. Yeom et al., ZnO nanowire-based nano-floating gate memory with Ptnanocrystals embedded in Al2O3 gate oxides. Nanotechnology 19(39), 395204 (2008)

    Article  Google Scholar 

  42. F. Hofmann et al., NVM based on FinFET device structures. Solid State Electron. 49, 1799–1804 (2005)

    Article  Google Scholar 

  43. I.H. Cho, B.G. Park, J.D. Lee, Nano-scale SONOS memory with a double-gate MOSFET structure. J. Kor. Phys. Soc. 42(2), 233–236 (2003)

    Google Scholar 

  44. S.W. Oh, S.S. Park, J.H. You, T.W. Kim, H.W. Kim, Nanoscale two-bit NAND silicon-oxide-nitride-oxide-silicon flash memories with a pair of double gate FinFET structures. J. Kor. Phys. Soc. 55(1), 263–266 (2009)

    Article  Google Scholar 

  45. K.H. Yuen, T.Y. Man, S. Member, A.C.K. Chan, M. Chan, S. Member, A 2-bit MONOS nonvolatile memory cell based on asymmetric double gate MOSFET structure. IEEE Electron. Dev. Lett. 24(8), 518–520 (2003)

    Article  Google Scholar 

  46. J. Fu et al., Integration of high-dielectrics and metal gate on gate-all-around Si-nanowire-based architecture for high-speed nonvolatile charge-trapping memory. IEEE Electron. Dev. Lett. 30(6), 662–664 (2009)

    Article  Google Scholar 

  47. M. Chen, H.Y. Yu, N. Singh, Y. Sun, N.S. Shen, Vertical-Si-nanowire SONOS memory for ultrahigh-density application. IEEE Electron. Dev. Lett. 30(8), 879–881 (2009)

    Article  Google Scholar 

  48. M.-F. Hung, Y.-C. Wu, Z.-Y. Tang, High-performance gate-all-around polycrystalline silicon nanowire with silicon nanocrystals nonvolatile memory. Appl. Phys. Lett. 98(16), 162108 (2011)

    Article  Google Scholar 

  49. H.-B. Chen, Y.-C. Wu, C.-K. Yang, L.-C. Chen, J.-H. Chiang, C.-Y. Chang, Impacts of poly-Si nanowire shape on gate-all-around flash memory with hybrid trap layer. IEEE Trans. Electron Dev. 32(10), 1382–1384 (2011)

    Article  Google Scholar 

  50. J. Yun, S. Member, Y. Kim, I.H. Park, J.H. Lee, D. Kang, M. Lee, H. Shin, S. Member, J.D. Lee, B. Park, A. Fin, Independent double-gate fin SONOS flash memory fabricated with sidewall spacer patterning. IEEE Trans. Electron Devices 56(8), 1721–1728 (2009)

    Article  Google Scholar 

  51. H. Lin, Z. Lin, W. Chen, T. Huang, Read characteristics of independent double-gate poly-Si nanowire SONOS devices. IEEE Trans. Electron Dev. 58(11), 3771–3777 (2011)

    Article  Google Scholar 

  52. International Technology Roadmap for Semiconductors 2011 Report, Emerging Research Devices (ERD)

    Google Scholar 

  53. http://www.hpl.hp.com/news/2010/jul-sep/memristorhynix.html

  54. S. Kim, H. Moon, D. Gupta, S. Yoo, Y. Choi, Resistive switching characteristics of sol-gel zinc oxide films for flexible memory applications. IEEE Trans. Electron Dev. 56(4), 696–699 (2009)

    Article  Google Scholar 

  55. D.L. Lewis, H.H.S. Lee, Architectural evaluation of 3D stacked RRAM caches, in 2009 IEEE International Conference on 3D System Integration (Sep 2009), pp. 1–4

    Google Scholar 

  56. D. Lee et al., Resistance switching of the nonstoichiometric zirconium oxide for nonvolatile memory applications. IEEE Electron Dev. Lett. 26(10), 719–721 (2005)

    Article  Google Scholar 

  57. F. Zhuge, S. Peng, C. He, X. Zhu, X. Chen, Y. Liu, R.-W. Li, Improvement of resistive switching in Cu/ZnO/Pt sandwiches by weakening the randomicity of the formation/rupture of Cu filaments. Nanotechnology 22(27), 275204 (2011)

    Article  Google Scholar 

  58. F. Zhuge, B. Hu, C. He, X. Zhou, Z. Liu, R.-W. Li, Mechanism of nonvolatile resistive switching in graphene oxide thin films. Carbon 49(12), 3796–3802 (2011)

    Article  Google Scholar 

  59. W.-Y. Chang, C.-A. Lin, J.-H. He, T.-B. Wu, Resistive switching behaviors of ZnO nanorod layers. Appl. Phys. Lett. 96(24), 242109 (2010)

    Article  Google Scholar 

  60. B. Hu, F. Zhuge, X. Zhu, S. Peng, X. Chen, L. Pan, Q. Yan, R.-W. Li, Nonvolatile bistable resistive switching in a new polyimide bearing 9-phenyl-9H-carbazole pendant. J. Mater. Chem. 22(2), 520 (2012)

    Article  Google Scholar 

  61. P. Misra, A.K. Das, L.M. Kukreja, Switching characteristics of ZnO based transparent resistive random access memory devices grown by pulsed laser deposition. Physica Status Solidi (C) 7(6), 1718–1720 (2010)

    Article  Google Scholar 

  62. M. Lee, Y. Park, B. Kang, S. Ahn, C. Lee, K. Kim, G. Stefanovich, J. Lee, S. Chung, Y. Kim, C. Lee, J. Bong, I. Baek, I. Yoo, 2-Stack 1D-1R cross point structure with oxide diodes as switch elements for high density resistance RAM applications. IEDM technical digest, in IEEE International Electron Devices Meeting (2007), pp. 771–774

    Google Scholar 

  63. M. Rozenberg, I. Inoue, M. Sánchez, Nonvolatile memory with multilevel switching: a basic model. Phys. Rev. Lett. 92(17), 178302 (2004)

    Article  Google Scholar 

  64. D.V.M.G. Dearnaley, A.M. Stoneham, Electrical phenomena in amorphous oxide films. Rep. Prog. Phys. 1129(33), 1129–1191 (1970)

    Article  Google Scholar 

  65. H. Sim, D. Choi, D. Lee, S. Seo, M. Lee, I. Yoo, H. Hwang, Resistance-switching characteristics of memory application. IEEE Electron Dev. Lett. 26(5), 292–294 (2005)

    Article  Google Scholar 

  66. Q. Tian, M. Tang, F. Jiang, Y. Liu, J. Wu, R. Zou, Y. Sun, Z. Chen, R. Li, J. Hu, Large-scaled star-shaped α-MnS nanocrystals with novel magnetic properties. Chem. Commun. 47(28), 8100–8102 (2011)

    Article  Google Scholar 

  67. Y.H. Tseng, W.C. Shen, C.J. Lin, Modeling of electron conduction in contact resistive random access memory devices as random telegraph noise. J. Appl. Phys. 111(7), 73701–737015 (2012)

    Article  Google Scholar 

  68. J. Won Seo, S.J. Baik, S.J. Kang, Y.H. Hong, J.H. Yang, K.S. Lim, A ZnO cross-bar array resistive random access memory stacked with heterostructure diodes for eliminating the sneak current effect. Appl. Phys. Lett. 98(23), 233505 (2011)

    Article  Google Scholar 

  69. Lee, Hesse, APL 80(6), 1040 (2002)

    Google Scholar 

  70. W. Fu, Z. Xu, X. Bai, C. Gu, E. Wang, Intrinsic memory function of carbon nanotube-based ferroelectric field-effect transistor. Nano Lett. 9(3), 921–925 (2009). http://pubs.acs.org/doi/abs/10.1021/nl801656w

  71. J. Hoffman, X. Pan, J.W. Reiner, F.J. Walker, J.P. Han, C.H. Ahn, T.P. Ma, Ferroelectric field effect transistors for memory applications. Adv. Mater. 22(26–27), 2957–2961 (2010)

    Article  Google Scholar 

  72. S.-Y. Chen, C.-L. Sun, S.-B. Chen, A. Chin, Bi 3.25 La 0.75 Ti3O12 thin films on ultrathin Al2O3 buffered Si for ferroelectric memory application. Appl. Phys. Lett. 80(17), 3168 (2002)

    Article  Google Scholar 

  73. S. Das, J. Appenzeller, FeTRAM. An organic ferroelectric material based novel random access memory cell. Nano Lett. 11(9), 4003–4007 (2011)

    Article  Google Scholar 

  74. H. Ishiwara, Memory operations of 1T2C-type ferroelectric memory cell with excellent data retention characteristics. IEEE Trans. Electron Dev. 48(9), 2002–2008 (2001)

    Article  Google Scholar 

  75. M.A. Khan, U.S. Bhansali, H.N. Alshareef, High-performance non-volatile organic ferroelectric memory on banknotes. Adv. Mater. 24, 2165–2170 (2012)

    Article  Google Scholar 

  76. Y.T. Lee, P.J. Jeon, K.H. Lee, R. Ha, H.-J. Choi, S. Im, Ferroelectric nonvolatile nanowire memory circuit using a single ZnO nanowire and copolymer top layer. Adv. Mater. 24(22), 3020–3025 (2012)

    Article  Google Scholar 

  77. F. Mfis, U. Plzt, S.T.O. Si, Nonvolatile memory operations of metal-ferroelectric insulator-semiconductor (MFIS) FET’s using PLZT/STO/SI(100) structures. IEEE Electron Dev. Lett. 18(4), 160–162 (1997)

    Article  Google Scholar 

  78. S.R. Rajwade, S. Member, K. Auluck, J.B. Phelps, K.G. Lyon, J.T. Shaw, E.C. Kan, S. Member, A ferroelectric and charge hybrid nonvolatile memory—part i: device concept and modeling. IEEE Trans. Electron Dev. 59(2), 441–449 (2012)

    Article  Google Scholar 

  79. S.R. Rajwade, S. Member, K. Auluck, J.B. Phelps, K.G. Lyon, J.T. Shaw, E.C. Kan, S. Member, A ferroelectric and charge hybrid nonvolatile memory—part II: experimental validation and analysis. IEEE Trans. Dev. Mater. Reliab. 59(2), 450–458 (2012)

    Article  Google Scholar 

  80. G.A. Salvatore, Ferroelectric field effect transistor for memory and switch applications. Small 4990 (2011)

    Google Scholar 

  81. E.B. Song, B. Lian, S. Min Kim, S. Lee, T.-K. Chung, M. Wang, C. Zeng, G. Xu, K. Wong, Y. Zhou, H.I. Rasool, D.H. Seo, H.-J. Chung, J. Heo, S. Seo, K.L. Wang, Robust bi-stable memory operation in single-layer graphene ferroelectric memory. Appl. Phys. Lett. 99(4), 042109 (2011)

    Article  Google Scholar 

  82. Y. Zheng, G.-X. Ni, C.-T. Toh, M.-G. Zeng, S.-T. Chen, K. Yao, B. Özyilmaz, Gate-controlled nonvolatile graphene-ferroelectric memory. Appl. Phys. Lett. 94(16), 163505 (2009)

    Article  Google Scholar 

  83. Z. Diao, D. Apalkov, M. Pakala, Y. Ding, A. Panchula, Y. Huai, Spin transfer switching and spin polarization in magnetic tunnel junctions with MgO and AlOx barriers. Appl. Phys. Lett. 87(23), 232502 (2005)

    Article  Google Scholar 

  84. Z. Diao, Z. Li, S. Wang, Y. Ding, A. Panchula, E. Chen, L.-C. Wang, Y. Huai, Spin-transfer torque switching in magnetic tunnel junctions and spin-transfer torque random access memory. J. Phys. Condens. Matter 19(16), 165209 (2007)

    Article  Google Scholar 

  85. Z. Diao, M. Pakala, A. Panchula, Y. Ding, D. Apalkov, L.-C. Wang, E. Chen, Y. Huai, Spin-transfer switching in MgO-based magnetic tunnel junctions (invited). J. Appl. Phys. 99(8), 08G510 (2006)

    Article  Google Scholar 

  86. Z. Diao, A. Panchula, Y. Ding, M. Pakala, S. Wang, Z. Li, D. Apalkov, H. Nagai, A. Driskill-Smith, L.-C. Wang, E. Chen, Y. Huai, Spin transfer switching in dual MgO magnetic tunnel junctions. Appl. Phys. Lett. 90(13), 132508 (2007)

    Article  Google Scholar 

  87. G.D. Fuchs, N.C. Emley, I.N. Krivorotov, P.M. Braganca, E.M. Ryan, S.I. Kiselev, J.C. Sankey, D.C. Ralph, R.A. Buhrman, J.A. Katine, Spin-transfer effects in nanoscale magnetic tunnel junctions. Appl. Phys. Lett. 85(7), 1205 (2004)

    Article  Google Scholar 

  88. Y. Huai, Spin-Transfer Torque MRAM (STT-MRAM): challenges and prospects. AAPPS Bull. 18(6), 33–40 (2008)

    Google Scholar 

  89. Y. Huai, F. Albert, P. Nguyen, M. Pakala, T. Valet, Observation of spin-transfer switching in deep submicron-sized and low-resistance magnetic tunnel junctions. Appl. Phys. Lett. 84(16), 3118 (2004)

    Article  Google Scholar 

  90. Y. Huai, M. Pakala, Z. Diao, D. Apalkov, Y. Ding, A. Panchula, Spin-transfer switching in MgO magnetic tunnel junction nanostructures. J. Magn. Magn. Mater. 304(1), 88–92 (2006)

    Article  Google Scholar 

  91. Y. Huai, M. Pakala, Z. Diao, Y. Ding, Spin transfer switching current reduction in magnetic tunnel junction based dual spin filter structures. Appl. Phys. Lett. 87(22), 222510 (2005)

    Article  Google Scholar 

  92. T. Kawahara, Challenges toward gigabit-scale spin-transfer torque random access memory and beyond for normally off, green information technology infrastructure (invited). J. Appl. Phys. 109(7), 07D325 (2011)

    Article  Google Scholar 

  93. P. Krzysteczko, X. Kou, K. Rott, A. Thomas, G. Reiss, Current induced resistance change of magnetic tunnel junctions with ultra-thin MgO tunnel barriers. J. Magn. Magn. Mater. 321(3), 144–147 (2009)

    Article  Google Scholar 

  94. C.J. Lin, S.H. Kang, Y.J. Wang, K. Lee, X. Zhu, W.C. Chen, X. Li, W.N. Hsu, Y.C. Kao, M.T. Liu, M. Nowak, N. Yu, 45 nm low power CMOS logic compatible embedded STT MRAM utilizing a reverse-connection 1T/1MTJ cell, in 2009 IEEE International Electron Devices Meeting (IEDM) (Dec 2009), pp. 1–4

    Google Scholar 

  95. M. Nakayama, T. Kai, N. Shimomura, M. Amano, E. Kitagawa, T. Nagase, M. Yoshikawa, T. Kishi, S. Ikegawa, H. Yoda, Spin transfer switching in TbCoFe∕CoFeB∕MgO∕CoFeB∕TbCoFe magnetic tunnel junctions with perpendicular magnetic anisotropy. J. Appl. Phys. 103(7), 07A710 (2008)

    Article  Google Scholar 

  96. S.S.P. Parkin, C. Kaiser, A. Panchula, P.M. Rice, B. Hughes, M. Samant, S. Yang, Giant tunnellingmagnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 3(December), 2–7 (2004)

    Google Scholar 

  97. Y. Qi, D. Xing, J. Dong, Relation between Julliere and Slonczewski models of tunneling magnetoresistance. Phys. Rev. B 58(5), 2783–2787 (1998)

    Article  Google Scholar 

  98. C.W. Smullen, V. Mohan, A. Nigam, S. Gurumurthi, M.R. Stan, Relaxing non-volatility for fast and energy-efficient STT-RAM caches, in 2011 IEEE 17th International Symposium on High Performance Computer Architecture (Feb 2011), pp. 50–61

    Google Scholar 

  99. C.W. Smullen, V. Mohan, A. Nigam, S. Gurumurthi, M.R. Stan, Relaxing non-volatility for fast and energy-efficient STT-RAM caches, in 2011 IEEE 17th International Symposium on High Performance Computer Architecture (Feb 2011), pp. 50–61

    Google Scholar 

  100. S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, K. Ando, Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 3(December), 868–871 (2004)

    Article  Google Scholar 

  101. H. Zhao, A. Lyle, Y. Zhang, P.K. Amiri, G. Rowlands, Low writing energy and sub nanosecond spin torque transfer switching of in-plane magnetic tunnel junction for spin torque transfer random access memory. J. Appl. Phys. 720(2011), 2011–2014 (2013)

    Google Scholar 

  102. W. Zhao, E. Belhaire, C. Chappert, F. Jacquet, P. Mazoyer, New non-volatile logic based on spin-MTJ. Physica Status Solidi (a) 205(6), 1373–1377 (2008)

    Article  Google Scholar 

  103. M.Y. Chan, L. Wei, Y. Chen, L. Chan, P.S. Lee, Charge-induced conductance modulation of carbon nanotube field effect transistor memory devices. Carbon 47(13), 3063–3070 (2009)

    Article  Google Scholar 

  104. G. Fei, G. Li, L. Wu, H. Xia, A spatially and temporally controlled shape memory process for electrically conductive polymer–carbon nanotube composites. Soft Matter 8(19), 5123 (2012)

    Article  Google Scholar 

  105. W. Fu, Z. Xu, X. Bai, C. Gu, E. Wang, Intrinsic memory function of carbon nanotube-based ferroelectric field-effect transistor. Nano Lett. 9(3), 921–925 (2009)

    Article  Google Scholar 

  106. S.K. Hwang, J.M. Lee, S. Kim, J.S. Park, H.I. Park, C.W. Ahn, K.J. Lee, T. Lee, S.O. Kim, Flexible multilevel resistive memory with controlled charge trap B- and N-doped carbon nanotubes. Nano Lett. 12(5), 2217–2221 (2012)

    Article  Google Scholar 

  107. E.B. Song, B. Lian, S. Min Kim, S. Lee, T.-K. Chung, M. Wang, C. Zeng, G. Xu, K. Wong, Y. Zhou, H.I. Rasool, D.H. Seo, H.-J. Chung, J. Heo, S. Seo, K.L. Wang, Robust bi-stable memory operation in single-layer graphene ferroelectric memory. Appl. Phys. Lett. 99(4), 042109 (2011)

    Article  Google Scholar 

  108. W.J. Yu, S.H. Chae, S.Y. Lee, D.L. Duong, Y.H. Lee, Ultra-transparent, flexible single-walled carbon nanotube non-volatile memory device with an oxygen-decorated grapheneelectrode. Adv. Mat. Deerfield Beach Fla. 23(16), 1889–1893 (2011)

    Article  Google Scholar 

  109. Y. Zheng, G.-X. Ni, C.-T. Toh, M.-G. Zeng, S.-T. Chen, K. Yao, B. Özyilmaz, Gate-controlled nonvolatile graphene-ferroelectric memory. Appl. Phys. Lett. 94(16), 163505 (2009)

    Article  Google Scholar 

  110. F. Zhuge, B. Hu, C. He, X. Zhou, Z. Liu, R.-W. Li, Mechanism of nonvolatile resistive switching in graphene oxide thin films. Carbon 49(12), 3796–3802 (2011)

    Article  Google Scholar 

  111. G.E. Begtrup, W. Gannett, T.D. Yuzvinsky, V.H. Crespi, A. Zettl, Nanoscale reversible mass transport for archival memory 2009. Nano Lett. 9(5), 1835–1838 (2009)

    Article  Google Scholar 

  112. J.E. Jang, S.N. Cha, Y.J. Choi, D.J. Kang, T.P. Butler, D.G. Hasko, J.E. Jung, J.M. Kim, G.A.J. Amaratunga, Nanoscale memory cell based on a nanoelectromechanical switched capacitor. Nature Nanotechnol. 3(1), 26–30 (2008)

    Article  Google Scholar 

  113. W.W. Jang, J.-B. Yoon, M.-S. Kim, J.-M. Lee, S.-M. Kim, E.-J. Yoon, K.H. Cho, S.-Y. Lee, I.-H. Choi, D.-W. Kim, D. Park, NEMS switch with 30 nm-thick beam and 20 nm-thick air-gap for high density non-volatile memory applications. Solid State Electron. 52(10), 1578–1583 (2008)

    Article  Google Scholar 

  114. J.W. Kang, Q. Jiang, Electrostatically telescoping nanotube nonvolatile memory device. Nanotechnology 18(9), 095705 (2007)

    Article  Google Scholar 

  115. S.W. Lee, S.J. Park, E.E.B. Campbell, Y.W. Park, A fast and low-power microelectromechanical system-based non-volatile memory device. Nature Commun. 2, 220 (2011)

    Article  Google Scholar 

  116. J. Zhao, J.-Q. Huang, F. Wei, J. Zhu, Mass transportation mechanism in electric-biased carbon nanotubes. Nano Lett. 10(11), 4309–4315 (2010)

    Article  Google Scholar 

  117. Q.-A. Huang, J.K.O. Sin, M.C. Poon, Field emission from silicon including continuum energy and surface quantization. Appl. Surf. Sci. 119, 229–236 (1997)

    Article  Google Scholar 

  118. R.H. Fowler, L. Nordheim, Electron emission in intense electric fields, in Proceedings of the Royal Society of London, vol. 119 (1928), pp. 173–181

    Google Scholar 

  119. M. Lenzlinger, E.H. Snow, Fowler Nordheim tunneling into thermally grown SiO2. J. Appl. Phys. 40, 278–283 (1969)

    Article  Google Scholar 

  120. E.L. Murphy, R.H. Good Jr, Phys. Rev. 102, 1464 (1956)

    Article  Google Scholar 

  121. J.G. Simmons, Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 34(6), 1793–1803 (1963)

    Article  Google Scholar 

  122. J. Maserjian, N. Zamani, Behavior of the Si/SiO2 interface observed by Fowler-Nordheim tunneling. J. Appl. Phys. 53(1), 559–567 (1981)

    Article  Google Scholar 

  123. K.-S. Wen, H.-H. Li, C.-Y. Wu, A new gate current simulation technique considering Si/SiO2 interface trap generation. Solid State Electron. 38(4), 851–859 (1995)

    Article  Google Scholar 

  124. N. Matsuo, Y. Takami, Y. Kitagawa, Modeling of direct tunneling for thin SiO2 film on n-type Si (1 0 0) by WKB method considering the quantum effect in the accumulation layer. Solid State Electron. 46(4), 577–579 (2002)

    Article  Google Scholar 

  125. G. Chakraborty, A. Sengupta, F.G. Requejo, C.K. Sarkar, Study of the relative performance of silicon and germanium nanoparticles embedded gate oxide in metal-oxide-semiconductor memory devices. J. Appl. Phys. 109, 064504 (2011)

    Article  Google Scholar 

  126. S.M. Amoroso, C.M. Compagnoni, A. Mauri, A. Maconi, A.S. Spinelli, A.L. Lacaita, Semi-analytical model for the transient operation of gate-all-around charge-trap memories. IEEE Trans. Electron. Dev. 58(9), 3116–3123 (2011)

    Article  Google Scholar 

  127. A. Sengupta, Studies on Nanoelectronic Devices. Ph.D. thesis, Jadavpur University (2012)

    Google Scholar 

  128. S. Tam, P.-K. Ko, C. Hu, Lucky-electron model of channel hot-electron injection in MOSFET’S. IEEE Trans. Electron Dev. 31(9), 1116–1125 (1984)

    Article  Google Scholar 

  129. C.W. Smullen et al., Relaxing non-volatility for fast and energy-efficient STT-RAM caches, in 2011 IEEE 17th International Symposium on High Performance Computer Architecture (Feb 2011), pp. 50–61

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amretashis Sengupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sengupta, A., Sharma, B., Sarkar, C.K. (2015). Applications of Nanotechnology in Next-Generation Nonvolatile Memories. In: Sengupta, A., Sarkar, C. (eds) Introduction to Nano. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47314-6_8

Download citation

Publish with us

Policies and ethics