Skip to main content

Cornea

  • Chapter
  • First Online:
Das menschliche Auge in Zahlen
  • 3263 Accesses

Zusammenfassung

Die stärkste refraktive Struktur des Auges ist die Cornea. Über den Tränenfilm ist sie in Kontakt mit der Luft. Die wichtigste Eigenschaft der Hornhaut ist ihre Transparenz, bedingt durch ihre Avaskularität, die Regularität des Epithels sowie die homogene Positionierung der extra- und zellulären Elemente des Stromas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Belmonte C, Garcia-Hirschfeld J, Gallar J. Neurobiology of ocular pain. Prog Retin Eye Res 1997:16:117–156

    Article  Google Scholar 

  • Belmonte C, Tervo TT, Gallar J. Sensory innervation of the eye. In: Adler´s Physiology of the Eye. 11th ed. Saunders 2011.

    Google Scholar 

  • Boettner E, Wolter J. Transmission of the ocular media. Invest Ophthalmol Vis Sci 1962;6:776–783

    Google Scholar 

  • Berman ER. Biochemistry of the eye. Springer Science+Business Media, New York 1991

    Book  Google Scholar 

  • Dawson DG, Ubels JL. Edelhauser HF. Cornea and Sclera. In: Adler´s physiology of the eye. Elsevier 2011. pp. 131–163

    Google Scholar 

  • Dixon JM, Blackwood L. Thermal variations of the human eye. Trans Am Ophthalmol Soc 1991;89:183–190

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dubbelman M, Weeber HA, van der Heijde RG, Völker-Dieben HJ. Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography. Acta Ophthalmol Scand 2002;80:379–383

    Article  PubMed  Google Scholar 

  • Eckard A, Stave J, Guthoff RF. In vivo investigations of the corneal epithelium with the confocal Rostock Laser Scanning Microscope (RLSM). Cornea 2006;25:127–131

    Article  PubMed  Google Scholar 

  • Ehlers N, Sorensen T, Bramsen T, Poulsen EH. Central corneal thickness in newborns and children. Acta Ophthalmol (Copenh) 1976;54:285–290

    Article  CAS  Google Scholar 

  • Ellrich J, Hopf HC. The R3 component of the blink reflex: normative data and application in spinal lesions. Electroencephalogr Clin Neurophysiol 1996;101:349–354

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Simpson TL. Corneal, limbal, and conjunctival epithelial thickness from optical coherence tomography. Optom Vis Sci 2008;85:E880–3

    Article  Google Scholar 

  • Germundsson J, Karanis G, Fagerholm P, Lagali N. Age-related thinning of Bowman‘s layer in the human cornea in vivo. Invest Ophthalmol Vis Sci 2013;54:6143–6149

    Article  PubMed  Google Scholar 

  • Hogan MJ, Alvarado JA, Weddell JE. Histology of the Human Eye. Sauders, Philadelphia 1971

    Google Scholar 

  • Johnson DH, Bourne WM, Campbell RJ: The ultrastructure of Descemet's membrane. I. Changes with age in normal corneas. Arch Ophthalmol 1982;100:1952–1955

    Article  PubMed  Google Scholar 

  • Johnson GJ. The environment and the eye. Eye 2004;18: 1235–1250

    Article  CAS  PubMed  Google Scholar 

  • Laule A, Cable MK, Hoffman CE, Hanna C. Endothelial cell population changes of human cornea during life. Arch Ophthalmol 1978;96:2031–2035

    Article  CAS  PubMed  Google Scholar 

  • Li HF, Petroll WM, Moller-Pedersen T. Epithelial and corneal thickness measurements by in vivo confocal microscopy through focusing (CMTF) Curr Eye Res 1997;16:214–221

    CAS  PubMed  Google Scholar 

  • Li M, He HG, Shi W. Quantification of the human lateral geniculate nucleus in vivo using MR imaging based on morphometry: volume loss with age. AJNR Am J Neuroradiol 2012; 33: 915–921

    Article  CAS  PubMed  Google Scholar 

  • Møller-Pedersen T, Ledet T, Ehlers N. The keratocyte density of human donor corneas. Curr Eye Res 1994;13:163–169

    Article  PubMed  Google Scholar 

  • Morgan PB, Soh MP, Efron N. Corneal surface temperature decreases with age. Cont Lens Anterior Eye 1999;22: 11–13

    Article  CAS  PubMed  Google Scholar 

  • Müller LJ, Vrensen GF, Pels L, Cardozo BN, Willekens B. Architecture of human corneal nerves. Invest Ophthalmol Vis Sci 1997;38:985–994

    PubMed  Google Scholar 

  • Murphy C, Alvarado J, Juster R, Maglio M. Prenatal and postnatal cellularity of the human corneal endothelium. A quantitative histologic study. Invest Ophthalmol Vis Sci 1984;25:312–322

    CAS  PubMed  Google Scholar 

  • Nucci P, Brancato R, Mets MB, Shevell SK. Normal endothelial cell density range in childhood. Arch Ophthalmol 1990;108:247–248

    Article  CAS  PubMed  Google Scholar 

  • Ortiz D, Piñero D, Mohamed H. Shabayek, Francisco Arnalich-Montiel, Alió JL. Corneal biomechanical properties in normal, post-laser in situ keratomileusis, and keratoconic eyes. Journal of Cataract & Refractive Surgery 2007;33:1371–1375

    Article  Google Scholar 

  • Patel S, McLaren J, Hodge D, Bourne W. Normal human keratocyte density and corneal thickness measurement by using confocal microscopy in vivo. Invest Ophthalmol Vis Sci 2001;42:333–339

    CAS  PubMed  Google Scholar 

  • Rohen JW. Morphologie und Embryologie des Sehorgans. in Francois J und Hollwich F: Augenheilkunde in Klinik und Praxis. Thieme, Stuttgart 1977

    Google Scholar 

  • Rossi B, Risaliti R, Rossi A. The R3 component of the blink reflex in man: a reflex response induced by activation of high threshold cutaneous afferents. Electroencephalogr Clin Neurophysiol 1989;73:334–340

    Article  CAS  PubMed  Google Scholar 

  • Sanes JN, Foss JA, Ison JR. Conditions that affect the thresholds of the components of the eyeblink reflex in humans. J Neurol Neurosurg Psychiatry 1982;45:543–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmoll T, Unterhuber A, Kolbitsch C, Le T, Stingl A, Leitgeb R. Precise thickness measurements of Bowman's layer, epithelium, and tear film. Optom Vis Sci 2012;89:795–802

    Article  Google Scholar 

  • Sin S, Simpson TL. The repeatability of corneal and corneal epithelial thickness measurements using optical coherence tomography. Optom Vis Sci 2006;83:360–365

    Article  PubMed  Google Scholar 

  • Speedwell L, Novakovic P, Sherrard ES, Taylor DS. The infant corneal endothelium. Arch Ophthalmol 1988;106: 771–775

    Article  CAS  PubMed  Google Scholar 

  • Vanysek J, Preisova J, Obraz J. Ultrasonography in Ophthalmology. Butterworths, London; 1970

    Google Scholar 

  • Wang J, Thomas J, Cox I, Rollins A. Noncontact measurements of central corneal epithelial and flap thickness after laser in situ keratomileusis. Invest Ophthalmol Vis Sci 2004;45:1812–1816

    Article  PubMed  Google Scholar 

  • Weale RA. A biography of the eye: development, growth, age. HK Lewis; London, 1982

    Google Scholar 

  • Yee RW, Matsuda M, Schultz RO, Edelhauser HF. Changes in the normal corneal endothelial cellular pattern as a function of age. Curr Eye Res 1985; 4:671–678

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Deutschland

About this chapter

Cite this chapter

Bergua, A. (2017). Cornea. In: Das menschliche Auge in Zahlen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47284-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47284-2_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47283-5

  • Online ISBN: 978-3-662-47284-2

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics