Skip to main content

Numerical Simulation Based on the Established Kinetics Model

  • Chapter
  • First Online:
  • 661 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this chapter [1], real-time numerical simulation of two-dimensional (2-D) cross section of pore channel growth in anodic porous alumina is simulated by numerically solving the established kinetics model in Chap. 2.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. C. Cheng, A.H.W. Ngan, Electrochim. Acta 56, 9998 (2011)

    Article  Google Scholar 

  2. Matlab, R2009a, Version 7.8.0.347. The Mathworks Inc. (2009)

    Google Scholar 

  3. G.C. Wood, in Oxide and Oxide Films, vol. 2, ed. by J.W. Diggle (Marcel Dekker, New York, 1973), p. 167

    Google Scholar 

  4. J.P. O’Sullivan, G.C. Wood, Proc. Roy. Soc. Lond. A 317, 511 (1970)

    Article  Google Scholar 

  5. P. Tucker, A. Mosquera, NAFEMS Introduction to Grid and Mesh Generation for CFD (NAFEMS, Glasgow, Ref: -R0079)

    Google Scholar 

  6. J.E. Houser, K.R. Hebert, J. Electrochem. Soc. 153, B566 (2006)

    Article  Google Scholar 

  7. M.M. Lohrengel, Mater. Sci. Eng. R 11, 243 (1993)

    Article  Google Scholar 

  8. J.W. Diggle, T.C. Downie, C.W. Goulding, Chem. Rev. 69, 365 (1969)

    Article  Google Scholar 

  9. N. Cabrera, N.F. Mott, Rep. Prog. Phys. 12, 163 (1949)

    Article  Google Scholar 

  10. T. Valand, K.E. Heusler, J. Electroanal. Chem. 149, 71 (1983)

    Article  Google Scholar 

  11. V.P. Parkhutik, V.I. Shershulsky, J. Phys. D: Appl. Phys. 25, 1258 (1992)

    Article  Google Scholar 

  12. G. Patermarakis, K. Moussoutzanis, Electrochim. Acta 54, 2434 (2009)

    Article  Google Scholar 

  13. G. Patermarakis, J. Electroanal. Chem. 635, 39 (2009)

    Article  Google Scholar 

  14. G. Patermarakis, J. Chandrinos, K. Masavetas, J. Solid State Electrochem. 11, 1191 (2007)

    Article  Google Scholar 

  15. J. Oh, Ph.D. Thesis, Massachusetts Institute of Technology, 2010

    Google Scholar 

  16. W. Lee, R. Ji, U. Gösele, K. Nielsch, Nat. Mater. 5, 741 (2006)

    Article  Google Scholar 

  17. H. Masuda, K. Fukuda, Science 268, 1466 (1995)

    Article  Google Scholar 

  18. Z. Su, W. Zhou, Adv. Mater. 20, 3663 (2008)

    Article  Google Scholar 

  19. C. Cheng, A.H.W. Ngan, J. Appl. Phys. 113, 184903 (2013)

    Article  Google Scholar 

  20. M. Nagayama, K. Tamura, Electrochim. Acta 12, 1097 (1967)

    Article  Google Scholar 

  21. K. Nishio, T. Yanagishita, S. Hatakeyama, H. Maegawa, H. Masuda, J. Vac. Sci. Technol. A B26, L10 (2008)

    Article  Google Scholar 

  22. W. Lee, J.C. Kim, U. Gösele, Adv. Funct. Mater. 20, 21 (2010)

    Google Scholar 

  23. D. Lo, R.A. Budiman, J. Electrochem. Soc. 154, C60 (2007)

    Article  Google Scholar 

  24. F. Keller, M.S. Hunter, D.L. Robinson, J. Electrochem. Soc. 100, 441 (1953)

    Article  Google Scholar 

  25. F. Li, L. Zhang, R.M. Metzger, Chem. Mater. 10, 2470 (1998)

    Article  Google Scholar 

  26. S. Ono, M. Saito, M. Ishiguro, H. Asoh, J. Electrochem. Soc. 151, B473 (2004)

    Article  Google Scholar 

  27. H. Asoh, K. Nishio, M. Nakao, T. Tamamura, H. Masuda, J. Electrochem. Soc. 148, B152 (2001)

    Article  Google Scholar 

  28. J.P. O’Sullivan, G.C. Wood, Proc. R. Soc. Lond. A 317, 511 (1970)

    Article  Google Scholar 

  29. N.Q. Zhao, X.X. Jiang, C.S. Shi, J.J. Li, Z.G. Zhao, X.W. Du, J. Mater. Sci. 42, 3878 (2007)

    Article  Google Scholar 

  30. T.P. Hoar, J. Yahalom, J. Electrochem. Soc. 110, 614 (1963)

    Google Scholar 

  31. J.M. Montero-Moreno, M. Sarret, C. Muller, J. Electrochem. Soc. 154, C169 (2007)

    Article  Google Scholar 

  32. L. Zaraska, G.D. Sulka, J. Szeremeta, M. Jaskula, Electrochim. Acta 55, 4377 (2010)

    Article  Google Scholar 

  33. W. Rasband, ImageJ, release 1.44, NIH: USA (public domain (2011) http://rsb.info.nih.gov/ij/)

  34. R. Hillebrand, F. Muller, K. Schwirn, W. Lee, M. Steinhart, ACS Nano 2, 913 (2008)

    Article  Google Scholar 

  35. Q. Van Overmeere, F. Blaffart, J. Proost, Electrochem. Comm. 12, 1174 (2010)

    Article  Google Scholar 

  36. C. Cherki, J. Siejka, J. Electrochem. Soc. 120, 784 (1973)

    Article  Google Scholar 

  37. N.Q. Zhao, X.X. Jiang, C.S. Shi, J.J. Li, Z.G. Zhao, X.W. Du, J. Mater. Sci. 42, 3878 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan Cheng .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cheng, C. (2015). Numerical Simulation Based on the Established Kinetics Model. In: Electro-Chemo-Mechanics of Anodic Porous Alumina Nano-Honeycombs: Self-Ordered Growth and Actuation. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47268-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47268-2_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47267-5

  • Online ISBN: 978-3-662-47268-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics