Skip to main content

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

Motifs are a general network analysis technique, which statistically relates network structure to epiphenomena on the network. This technique has been developed and brought to maturity in molecular biology, where it has been successfully applied to network-based chemical and biological dynamics of various types. Early on, the motif technique has been successfully applied outside biology as well – to social networks, electrical networks, and many more. Results by Milo et al. showed that the motif signature of a network varies from realm to realm to some extent but is significantly more homogenous within a realm. This observation has been the starting point of the thread of research presented in this paper. More specifically, we do not compare networks from different realms but focus on networks from a given realm. In several case studies on particular realms, we found that motif signatures suffice to distinguish certain classes of networks from each other. In this paper, we summarize our previous work, and present some new results. In particular, in Biemann et al. (2012), we found that natural and artificially generated language can be distinguished from each other through the motif signatures of the co-occurrence graphs. Based on that, we present work on co-occurrence graphs that are restricted to word classes. We found that the co-occurrence graphs of verbs (and other word classes used like predicates) exhibit strongly different motif signatures and can be distinguished by that. To demonstrate the general power of the approach, we present further original work on co-authorship networks, peer-to-peer streaming networks, and mailing networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggarwal, C.C., Wang, H. (eds.): Managing and Mining Graph Data. Kluwer (2010)

    Google Scholar 

  2. Alon, U.: Network Motifs: Theory and Experimental Approaches. Nature Review Genetics 8, 450–461 (2007)

    Article  Google Scholar 

  3. Biemann, C.: Unsupervised Part-of-Speech Tagging Employing Efficient Graph Clustering. In: Proceedings of the Student Research Workshop at COLING/ACL 2006, Sydney, Australia (2006)

    Google Scholar 

  4. Biemann, C., Bordag, S., Quasthoff, U.: Automatic Acquisition of Paradigmatic Relations using Iterated Co-occurrences. In: Proceedings of LREC 2004, Lisbon, Portugal (2004)

    Google Scholar 

  5. Biemann, C., Heyer, G., Quasthoff, U., Richter, M.: The Leipzig Corpora Collection – Monolingual corpora of standard size. In: Proceedings of Corpus Linguistic 2007, Birmingham, UK (2007)

    Google Scholar 

  6. Biemann, C., Roos, S., Weihe, K.: Quantifying Semantics Using Complex Network Analysis. In: Proceedings of COLING 2012, Mumbai, India (2012)

    Google Scholar 

  7. Bisk, Y., Hockenmaier, J.: An HDP Model for Inducing Combinatory Categorial Grammars. Transactions of the Association for Computational Linguistics 1, 75–88 (2013)

    Google Scholar 

  8. Boyd-Graber, J., Blei, D.M.: Syntactic Topic Models. In: Proceedings of Neural Information Processing Systems, Vancouver, British Columbia (2008)

    Google Scholar 

  9. Brinkmeier, M., Schäfer, G., Strufe, T.: Optimally DoS Resistant P2P Topologies for Live Multimedia Streaming. TPDS 20, 831–834 (2009)

    Google Scholar 

  10. Brown, P.F., Pietra, V.J.D., de Souza, P.V., Lai, J.C., Mercer, R.L.: Class-Based n-gram Models of Natural Language. Computational Linguistics 18(4), 467–479 (1992)

    Google Scholar 

  11. Clark, A.: Combining distributional and morphological information for part of speech induction. In: Proceedings of the Tenth Conference on European Chapter of the Association for Computational Linguistics, vol. 1, pp. 59–66 (2003)

    Google Scholar 

  12. Dorogovtsev, S.N., Mendes, J.F.F.: Language as an evolving word web. Proceedings of The Royal Society of London. Series B, Biological Sciences (2001)

    Google Scholar 

  13. Dunning, T.: Accurate methods for the statistics of surprise and coincidence. Computational Linguistics 19(1), 61–74 (1993)

    Google Scholar 

  14. Jin, N., Young, C., Wang, W.: Graph classification based on pattern co-occurrence. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management, CIKM 2009, Hong Kong, China, pp. 573–582 (2009), doi:10.1145/1645953.1646027

    Google Scholar 

  15. Juszczyszyn, K., Kołaczek, G.: Motif-based attack detection in network communication graphs. In: De Decker, B., Lapon, J., Naessens, V., Uhl, A. (eds.) CMS 2011. LNCS, vol. 7025, pp. 206–213. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Koehn, P.: Statistical Machine Translation, 1st edn. Cambridge University Press, New York (2010)

    Google Scholar 

  17. Krumov, L., Andreeva, A., Strufe, T.: Resilient Peer-to-Peer Live-Streaming using Motifs. In: 11th IEEE World of Wireless, Mobile and Multimedia Networks (WoWMoM), pp. 1–8 (2010)

    Google Scholar 

  18. Krumov, L., Fretter, C., Müller-Hannemann, M., Weihe, K., Hütt, M.-T.: Motifs in co-authorship networks and their relation to the impact of scientific publications. European Physical Journal B 84(4), 535–540 (2011)

    Article  Google Scholar 

  19. Krumov, L., Schweizer, I., Bradler, D., Strufe, T.: Leveraging Network Motifs for the Adaptation of Structured Peer-to-Peer-Networks. In: GLOBECOM, pp. 1–5 (2010)

    Google Scholar 

  20. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. I, pp. 281–297. Berkeley University of California Press (1967)

    Google Scholar 

  21. Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Processing. MIT Press, Cambridge (1999)

    Google Scholar 

  22. Miller, G.A., Charles, W.G.: Contextual Correlates of Semantic Similarity. Language and Cognitive Processes 6(1), 1–28 (1991)

    Article  Google Scholar 

  23. Milo, R., Itzkovitz, S., Kashtan, N., Levitt, R., Shen-Orr, S., Ayzenshtat, I., Sheffer, M., Alon, U.: Superfamilies of evolved and designed networks. Science 303(5663), 1538–1542 (2004)

    Article  Google Scholar 

  24. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network Motifs: Simple Building Blocks of Complex Networks. Science C 298(5594), 824–827 (2002), doi:10.1126/science.298.5594.824

    Google Scholar 

  25. Newman, M.E.J., Watts, D.J., Strogatz, S.H.: Random graph models of social networks. Proc. Natl. Acad. Sci. USA 99(suppl. 1), 2566–2572 (2002)

    Article  Google Scholar 

  26. Quasthoff, U., Richter, M., Biemann, C.: Corpus Portal for Search in Monolingual Corpora. In: Proceedings of the Fifth International Conference on Language Resources and Evaluation, LREC, Genova, Italy, pp. 1799–1802 (2006)

    Google Scholar 

  27. Ramabhadran, B., Khudanpur, S., Arisoy, E. (eds.): Proceedings of the NAACL-HLT 2012 Workshop: Will We Ever Really Replace the N-gram Model? On the Future of Language Modeling for HLT, Montréal, Canada (2012)

    Google Scholar 

  28. Schmid, H.: Probabilistic Part-of-Speech Tagging Using Decision Trees. In: Proceedings of the International Conference on New Methods in Language Processing, Manchester, UK (1994)

    Google Scholar 

  29. Schreiber, F., Schwöbbermeyer, H.: Motifs in Biological Networks. In: Stumpf, M., Wiuf, C. (eds.) Statistical and Evolutionary Analysis of Biological Network Data, pp. 45–64. Imperial College Press/World Scientific (2010)

    Google Scholar 

  30. Shen-Orr, S.S., Milo, R., Mangan, S., Alon, U.: Network motifs in the transcriptional regulation network of Escherichia coli. Nature Genetics 31(1), 64–68 (2002)

    Article  Google Scholar 

  31. Søgaard, A.: Unsupervised dependency parsing without training. Natural Language Engineering 18(Special Issue 02), 187–203 (2012), doi:10.1017/S1351324912000022

    Article  Google Scholar 

  32. Strufe, T., Schäfer, G., Chang, A.: BCBS: An Efficient Load Balancing Strategy for Cooperative Overlay Live-Streaming. In: Proc. IEEE ICC (2006)

    Google Scholar 

  33. Wong, E., Baur, B., Quader, S., Huang, C.-H.: Biological Network Motif Detection: Principles and Practice. Briefings in Bioinformatics 13(2), 202–215 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Biemann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Biemann, C., Krumov, L., Roos, S., Weihe, K. (2016). Network Motifs Are a Powerful Tool for Semantic Distinction. In: Mehler, A., Lücking, A., Banisch, S., Blanchard, P., Job, B. (eds) Towards a Theoretical Framework for Analyzing Complex Linguistic Networks. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47238-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47238-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47237-8

  • Online ISBN: 978-3-662-47238-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics