Advertisement

Structure and Organization of the Mental Lexicon: A Network Approach Derived from Syntactic Dependency Relations and Word Associations

  • Simon De DeyneEmail author
  • Steven Verheyen
  • Gert Storms
Part of the Understanding Complex Systems book series (UCS)

Abstract

Semantic networks are often used to represent the meaning of a word in the mental lexicon. To construct a large-scale network for this lexicon, text corpora provide a convenient and rich resource. In this chapter the network properties of a text-based approach are evaluated and compared with a more direct way of assessing the mental content of the lexicon through word associations. This comparison indicates that both approaches highlight different properties specific to linguistic and mental representations. Both types of network are qualitatively different in terms of their global network structure and the content of the network communities. Moreover, behavioral data from relatedness judgments show that language networks do not capture these judgments as well as mental networks.

Keywords

Community Detection Semantic Network Word Association Mental Lexicon Concrete Word 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ball, B., Karrer, B., Newman, M.E.J.: Efficient and principled method for detecting communities in networks. Physical Review E 84(3), 036103 (2011)Google Scholar
  2. Baronchelli, A., Ferrer-i-Cancho, R., Pastor-Satorras, R., Chater, N., Christiansen, M.H.: Networks in cognitive science. Trends in Cognitive Sciences 17(7), 348–360 (2013)CrossRefGoogle Scholar
  3. Beckage, N.M., Smith, L.B., Hills, T.: Semantic network connectivity is related to vocabulary growth rate in children. In: The Annual Meeting of The Cognitive Science Society (CogSci), pp. 2769–2774 (2010)Google Scholar
  4. Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment 2008(10), P10008+ (2008)Google Scholar
  5. Borge-Holthoefer, J., Arenas, A.: Categorizing words through semantic memory navigation. The European Physical Journal B-Condensed Matter and Complex Systems 74(2), 265–270 (2010)CrossRefGoogle Scholar
  6. Bouma, G., van Noord, G., Malouf, R.: Alpino: Wide Coverage Computational Analysis of Dutch. In: Eleventh Meeting of Computational Linguistics in the Netherlands, CLIN, Tilburg, pp. 45–59 (2000)Google Scholar
  7. Buchanan, L., Westbury, C., Burgess, C.: Characterizing the neighbourhood: Semantic neighbourhood effects in lexical decision and naming. Psychonomics Bulletin and Review 8, 531–544 (2001)CrossRefGoogle Scholar
  8. Bullinaria, J.A., Levy, J.P.: Extracting semantic representations from word co-occurrence statistics: A computational study. Behavior Research Methods 39, 510–526 (2007)CrossRefGoogle Scholar
  9. Bullmore, E., Sporns, O.: The economy of brain network organization. Nature Reviews Neuroscience 13(5), 336–349 (2012)Google Scholar
  10. Capitán, J.A., Borge-Holthoefer, J., Gómez, S., Martinez-Romo, J., Araujo, L., Cuesta, J.A., Arenas, A.: Local-based semantic navigation on a networked representation of information. PloS One 7(8), e43694 (2012)Google Scholar
  11. Ceulemans, E., Storms, G.: Detecting intra-and inter-categorical structure in semantic concepts using HICLAS. Acta Psychologica 133(3), 296–304 (2010)CrossRefGoogle Scholar
  12. Chumbley, J.I.: The roles of typicality, instance dominance, and category dominance in verifying category membership. Journal of Experimental Psychology: Learning, Memory, and Cognition 12, 257–267 (1986)Google Scholar
  13. Chumbley, J.I., Balota, D.A.: A word’s meaning affects the decision in lexical decision. Memory & Cognition 12, 590–606 (1984)CrossRefGoogle Scholar
  14. Collins, A.M., Loftus, E.F.: A spreading-activation theory of semantic processing. Psychological Review 82, 407–428 (1975)CrossRefGoogle Scholar
  15. Collins, A.M., Quillian, M.R.: Retrieval time from semantic memory. Journal of Verbal Learning and Verbal Behavior 9, 240–247 (1969)CrossRefGoogle Scholar
  16. Cramer, P.: Word Association. Academic Press, New York (1968)Google Scholar
  17. Crutch, S.J., Warrington, E.K.: Abstract and concrete concepts have structurally different representational frameworks. Brain 128, 615–627 (2005)CrossRefGoogle Scholar
  18. De Deyne, S., Verheyen, S., Storms, G.: The role of corpussize and syntax in deriving lexico-semantic representations for a wide range of concepts (2014) (forthcoming)Google Scholar
  19. De Deyne, S., Voorspoels, W., Verheyen, S., Navarro, D.J., Storms, G.: Accounting for graded structure in adjective categories with valence-based opposition relationships. Language, Cognition and Cognitive Processes 29, 568–583 (2013)Google Scholar
  20. De Deyne, S., Verheyen, S., Ameel, E., Vanpaemel, W., Dry, M., Voorspoels, W., Storms, G.: Exemplar by Feature Applicability Matrices and Other Dutch Normative Data for Semantic Concepts. Behavior Research Methods 40, 1030–1048 (2008)CrossRefGoogle Scholar
  21. De Deyne, S.: Proximity in Semantic Vector Space. Unpublished Doctoral Dissertation (2008)Google Scholar
  22. De Deyne, S., Navarro, D.J., Storms, G.: Better explanations of lexical and semantic cognition using networks derived from continued rather than single word associations. Behavior Research Methods 45, 480–498 (2013a)CrossRefGoogle Scholar
  23. De Deyne, S., Navarro, D.J., Storms, G.: Associative strength and semantic activation in the mental lexicon: evidence from continued word associations. In: Knauff, M., Pauen, M., Sebanz, N., Wachsmuth, I. (eds.) Proceedings of the 33rd Annual Conference of the Cognitive Science Society, pp. 2142–2147. Cognitive Science Society, Austin (2013b)Google Scholar
  24. De Deyne, S., Storms, G.: Word Associations: Network and Semantic properties. Behavior Research Methods 40, 213–231 (2008)CrossRefGoogle Scholar
  25. de Groot, A.M.B.: Representational Aspects of Word Imageability and Word Frequency as Assessed Through Word Association. Journal of Experimental Psychology: Learning, Memory, and Cognition 15, 824–845 (1989)Google Scholar
  26. Dennis, S.: A Memory-Based Theory of Verbal Cognition. Cognitive Science 29(2), 145–193 (2005)MathSciNetCrossRefGoogle Scholar
  27. Fagiolo, G.: Clustering in Complex Directed Networks. Physical Review E 76, 026107 (2007)Google Scholar
  28. Fellbaum, C.: WordNet: An electronic lexical Database. MIT Press, Cambridge (1998)Google Scholar
  29. Firth, J.R.: Selected papers of JR Firth, 1952-59. Indiana University Press (1968)Google Scholar
  30. Fortunato, S.: Community detection in graphs. Physics Reports 486(3), 75–174 (2010)MathSciNetCrossRefGoogle Scholar
  31. Galbraith, R.C., Underwood, B.J.: Perceived frequency of concrete and abstract words. Memory & Cognition 1, 56–60 (1973)CrossRefGoogle Scholar
  32. Gentner, D., Kurtz, K.: Relational categories. In: Ahn, W.K., Goldstone, R.L., Love, B.C., Markman, A.B., Wolff, P.W. (eds.) Categorization Inside and Outside the Lab, pp. 151–175. American Psychology Association, Washington, DC (2005)CrossRefGoogle Scholar
  33. Gentner, D., Kurtz, K.: Relations, objects, and the composition of analogies. Cognitive Science 30, 609–642 (2006)CrossRefGoogle Scholar
  34. Griffiths, T.L., Steyvers, M.: Prediction and Semantic Association. In: Advances in Neural Information Processing Systems, vol. 15, pp. 11–18. MIT Press, Cambridge (2003)Google Scholar
  35. Griffiths, T.L., Steyvers, M., Firl, A.: Google and the Mind. Psychological Science 18, 1069–1076 (2007)CrossRefGoogle Scholar
  36. Heylen, K., Peirsman, Y., Geeraerts, D.: Automatic synonymy extraction. In: A Comparison of Syntactic Context Models. LOT Computational Linguistics in the Netherlands 2007, pp. 101–116 (2008)Google Scholar
  37. Hughes, T., Ramage, D.: Lexical Semantic Relatedness with Random Graph Walks. In: Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), pp. 581–589. Association for Computational Linguistics, Prague (2007)Google Scholar
  38. Hutchison, K.A.: Is semantic priming due to association strength or feature overlap? Psychonomic Bulletin and Review 10, 785–813 (2003)CrossRefGoogle Scholar
  39. Kenett, Y.N., Kenett, D.Y., Ben-Jacob, E., Faust, M.: Global and local features of semantic networks: Evidence from the Hebrew mental lexicon. PloS One 6(8), e23912 (2011)Google Scholar
  40. Kenett, Y.N., Wechsler-Kashi, D., Kenett, D.Y., Schwartz, R.G., Ben-Jacob, E., Faust, M.: Semantic organization in children with cochlear implants: computational analysis of verbal fluency. Frontiers in Psychology 4 (2013)Google Scholar
  41. Keuleers, E., Brysbaert, M., New, B.: SUBTLEX-NL: A new measure for Dutch word frequency based on film subtitles. Behavior Research Methods 42(3), 643–650 (2010)CrossRefGoogle Scholar
  42. Kintsch, W.: Comprehension: A paradigm for cognition. Cambridge University Press (1998)Google Scholar
  43. Kintsch, W., Mangalath, P.: The construction of meaning. Topics in Cognitive Science 3(2), 346–370 (2011)CrossRefGoogle Scholar
  44. Kiss, G.R.: Words, Associations, and Networks. Journal of Verbal Learning and Verbal Behavior 7, 707–713 (1968)CrossRefGoogle Scholar
  45. Lancichinetti, A., Radicchi, F., Ramasco, J.J., Fortunato, S.: Finding statistically significant communities in networks. PloS One 6(4), e18961 (2011)Google Scholar
  46. Landauer, T.K., Dumais, S.T.: A solution to Plato’s Problem: The latent semantic analysis theory of acquisition, induction and representation of knowledge. Psychological Review 104, 211–240 (1997)CrossRefGoogle Scholar
  47. Landauer, T.K.: LSA as a theory of meaning. In: Landauer, T.K., McNamara, D.S., Dennis, S., Kintsch, W. (eds.) Handbook of Latent Semantic Analysis, pp. 3–35. Lawrence Erlbaum Associates, Mahwah (2007)Google Scholar
  48. Leicht, E.A., Holme, P., Newman, M.E.J.: Vertex similarity in networks. Psychical Review E 73, 026120 (2006)Google Scholar
  49. Lin, E.L., Murphy, G.L.: Thematic Relations in Adults’ Concepts. Journal of Experimental Psychology: General 1, 3–28 (2001)CrossRefGoogle Scholar
  50. Lopez, A., Atran, S., Coley, J.D., Medin, D.L., Smith, E.E.: The tree of life: Universal and cultural features of folkbiological taxonomies and inductions. Cognitive Psychology 32(3), 251–295 (1997)CrossRefGoogle Scholar
  51. Lund, K., Burgess, C.: Producing high-dimensional semantic spaces from lexical co-occurrence. Behavior Research Methods, Instruments, and Computers 28, 203–208 (1996)CrossRefGoogle Scholar
  52. Manin, D.Y.: Zipf’s law and avoidance of excessive synonymy. Cognitive Science 32(7), 1075–1098 (2008)CrossRefGoogle Scholar
  53. McRae, K., Khalkhali, S., Hare, M.: Semantic and associative relations: examining a tenuous dichotomy. In: Reyna, V.F., Chapman, S., Dougherty, M., Confrey, J. (eds.) The Adolescent Brain: Learning, Reasoning, and Decision Making, pp. 39–66. American Psychological Association, Washington, DC (2011), doi:10.1037/13493-002Google Scholar
  54. Medin, D.L., Lynch, E.B., Coley, J.D., Atran, S.: Categorization and reasoning among tree experts: Do all roads lead to Rome? Cognitive Psychology 32(1), 49–96 (1997)CrossRefGoogle Scholar
  55. Medin, D.L., Lynch, E.B., Solomon, K.O.: Are there kinds of concepts? Annual Review of Psychology 51(1), 121–147 (2000)CrossRefGoogle Scholar
  56. Medin, D.L., Rips, L.J.: Concepts and categories: memory, meaning, and metaphysics. In: Holyoak, K., Morrison, R. (eds.) The Cambridge Handbook of Thinking and Reasoning, pp. 37–72. Cambridge University Press, Cambridge (2005)Google Scholar
  57. Mervis, C.B., Rosch, E.: Categorization of natural objects. Annual Review of Psychology 32, 89–115 (1981)CrossRefGoogle Scholar
  58. Miller, G.A., Charles, W.G.: Contextual Correlates of Semantic Similarity. Language and Cognitive Processes 6, 1–28 (1991)CrossRefGoogle Scholar
  59. Mollin, S.: Combining corpus linguistics and psychological data on word co-occurrence: Corpus collocates versus word associations. Corpus Linguistics and Linguistic Theory 5, 175–200 (2009)CrossRefGoogle Scholar
  60. Monaco, J.D., Abbott, L.F., Kahana, M.J.: Lexico-semantic structure and the word-frequency effect in recognition memory. Learning & Memory 14, 204–213 (2007)CrossRefGoogle Scholar
  61. Moors, A., De Houwer, J., Hermans, D., Wanmaker, S., van Schie, K., Van Harmelen, A.-L., De Schryver, M., De Winne, J., Brysbaert, M.: Norms of valence, arousal, dominance, and age of acquisition for 4,300 Dutch words. Behavior Research Methods, 1–9 (2012)Google Scholar
  62. Morais, A.S., Olsson, H., Schooler, L.J.: Mapping the structure of semantic memory. Cognitive Science 37(1), 125–145 (2013)CrossRefGoogle Scholar
  63. Motter, A.E., de Moura, A.P.S., Lai, Y.-C., Dasgupta, P.: Topology of the conceptual network of language. Physical Review E 6, 065102 (2002)Google Scholar
  64. Murphy, G.L.: The big book of concepts. MIT Press, Cambridge (2002)Google Scholar
  65. Nelson, D.L., McEvoy, C.L.: What is this thing called frequency? Memory & Cognition 28, 509–522 (2000)CrossRefGoogle Scholar
  66. Nelson, D.L., McEvoy, C.L., Schreiber, T.A.: The University of South Florida free association, rhyme, and word fragment norms. Behavior Research Methods, Instruments, and Computers 36, 402–407 (2004)CrossRefGoogle Scholar
  67. Niedenthal, P.M., Halberstadt, J.B., Innes-Ker, A.H.: Emotional response categorization. Psychological Review 106(2), 337 (1999)CrossRefGoogle Scholar
  68. Oostdijk, N.: The Spoken Dutch Corpus: Overview and first evaluation. In: Piperidis, S., Stainhaouer, G. (eds.) Proceedings of Second International Conference on Language Resources and Evaluation, vol. 2, pp. 887–894. ELRA, Paris (2000)Google Scholar
  69. Ordelman, R.J.F.: Twente nieuws corpus (TWNC). Tech. rep. Parlevink Language Technology Group, University of Twente (2002)Google Scholar
  70. Padó, S., Lapata, M.: Dependency-Based Construction of Semantic Space Models. Computational Linguistics 33(2), 161–199 (2007)CrossRefGoogle Scholar
  71. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the web. Tech. rep. Computer Science Department, Stanford University (1998)Google Scholar
  72. Pereira, F., Tishby, N., Lee, L.: Distributional clustering of English words. In: Proceedings of the 31st Annual Meeting on Association for Computational Linguistics, pp. 183–190. Association for Computational Linguistics, Columbus (1993)CrossRefGoogle Scholar
  73. Pexman, P.M., Hargreaves, I.S., Siakaluk, P.D., Bodner, G.E., Pope, J.: There are many ways to be rich: Effects of three measures of semantic richness on visual word recognition. Psychonomic Bulletin & Review 15(1), 161–167 (2008)CrossRefGoogle Scholar
  74. Pexman, P.M., Holyk, G.G., Monfils, M.-H.: Number-of-features effects in semantic processing. Memory & Cognition 31, 842–855 (2003)CrossRefGoogle Scholar
  75. Plaut, D.C., Shallice, T.: Deep dyslexia: A case study of connectionist neuropsychology. Cognitive Neuropsychology 10, 377–500 (1993)CrossRefGoogle Scholar
  76. Prior, A., Bentin, S.: Incidental formation of episodic associations: the importance of sentential contex. Memory & Cognition 31, 306–316 (2003)CrossRefGoogle Scholar
  77. Van Rensbergen, B., De Deyne, S., Storms, G.: Cue-association correspondence on valence, dominance, and arousal. Manuscript submitted for publication (2014)Google Scholar
  78. Rogers, T.T., McClelland, J.L.: Semantic cognition: A parallel distributed processing approach. MIT Press, Cambridge (2004)Google Scholar
  79. Rosch, E.: Natural Categories. Cognitive Psychology 4, 328–350 (1973)CrossRefGoogle Scholar
  80. Ruts, W., De Deyne, S., Ameel, E., Vanpaemel, W., Verbeemen, T., Storms, G.: Dutch norm data for 13 semantic categories and 338 exemplars. Behaviour Research Methods, Instruments, and Computers 36, 506–515 (2004)CrossRefGoogle Scholar
  81. Samsonovic, A.V., Ascoli, G.A.: Principal semantic components of language and the measurement of meaning. PloS One 5(6), e10921 (2010)Google Scholar
  82. Schank, R.C., Abelson, R.P.: Scripts, plans, goals, and understanding: An inquiry into human knowledge structures. Lawrence Erlbaum, Hillsdale (1977)Google Scholar
  83. Schwanenflugel, P.J., Akin, C., Luh, W.M.: Context availability and the recall of abstract and concrete words. Memory & Cognition 20, 96–104 (1992)CrossRefGoogle Scholar
  84. Sharp, D., Cole, M., Lave, C., Ginsburg, H.P., Brown, A.L., French, L.A.: Education and cognitive development: The evidence from experimental research. In: Monographs of the society for Research in Child Development, pp. 1–112 (1979)Google Scholar
  85. Simmons, W.K., Hamann, S.B., Harenski, C.N., Hu, X.P., Barsalou, L.W.: fMRI evidence for word association and situated simulation in conceptual processing. Journal of Physiology - Paris 102, 106–119 (2008)CrossRefGoogle Scholar
  86. Solé, R.V., Corominas-Murtra, B., Valverde, S., Steels, L.: Language networks: Their structure, function, and evolution. Complexity 15(6), 20–26 (2010)CrossRefGoogle Scholar
  87. Steyvers, M., Tenenbaum, J.B.: The Large-Scale Structure of Semantic Networks: Statistical Analyses and a Model of Semantic Growth. Cognitive Science 29, 41–78 (2005)CrossRefGoogle Scholar
  88. Szalay, L.B., Deese, J.: Subjective meaning and culture: An assessment through word associations. Lawrence Erlbaum, Hillsdale (1978)Google Scholar
  89. Van Dongen, S.: Graph clustering by flow simulation. PhD thesis. University of Utrecht (2000)Google Scholar
  90. Verheyen, S., Stukken, L., De Deyne, S., Dry, M.J., Storms, G.: The generalized polymorphous concept account of graded structure in abstract categories. Memory & Cognition 39, 1117–1132 (2011)CrossRefGoogle Scholar
  91. Vitevitch, M.S.: What can graph theory tell us about word learning and lexical retrieval? Journal of Speech, Language, and Hearing Research 51(2), 408–422 (2008)CrossRefGoogle Scholar
  92. Warrington, E.K., Shallice, T.: Category specific semantic impairments. Brain 107, 829–854 (1984)CrossRefGoogle Scholar
  93. Wisniewski, E.J., Bassok, M.: What Makes a Man Similar to a Tie? Cognitive Psychology 39, 208–238 (1999)CrossRefGoogle Scholar
  94. Wittgenstein, L.: Philosophical Investigations: 50th Anniversary Commemorative Edition. Blackwell Publishing, Incorporated, Oxford (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.University of AdelaideAdelaideAustralia
  2. 2.Faculty of Psychology and Educational SciencesUniversity of LeuvenLeuvenBelgium

Personalised recommendations