Advertisement

Non-crossing Dependencies: Least Effort, Not Grammar

  • Ramon Ferrer-i-CanchoEmail author
Part of the Understanding Complex Systems book series (UCS)

Abstract

The use of null hypotheses (in a statistical sense) is common in hard sciences but not in theoretical linguistics. Here the null hypothesis that the low frequency of syntactic dependency crossings is expected by an arbitrary ordering of words is rejected. It is shown that this would require star dependency structures, which are both unrealistic and too restrictive. The hypothesis of the limited resources of the human brain is revisited. Stronger null hypotheses taking into account actual dependency lengths for the likelihood of crossings are presented. Those hypotheses suggests that crossings are likely to reduce when dependencies are shortened. A hypothesis based on pressure to reduce dependency lengths is more parsimonious than a principle of minimization of crossings or a grammatical ban that is totally dissociated from the general and non-linguistic principle of economy.

Keywords

Relative Clause Degree Sequence Dependency Tree Linear Arrangement Dependency Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [Aldous(1990)]
    Aldous, D.: The Random Walk Construction of Uniform Spanning Trees and Uniform Labelled Trees. SIAM J. Disc. Math. 3, 450–465 (1990), doi:10.1137/0403039MathSciNetCrossRefzbMATHGoogle Scholar
  2. [Bach et al.(1986)]
    Bach, E., Brown, C., Marslen-Wilson, W.: Crossed and Nested Dependencies in German and Dutch: A Psycholinguistic Study. Language and Cognitive Processes 1(4), 249–262 (1986), doi:10.1080/01690968608404677CrossRefGoogle Scholar
  3. [Baronchelli et al.(2013)]
    Baronchelli, A., Ferrer-i-Cancho, R., Pastor-Satorras, R., Chatter, N., Christiansen, M.: Networks in Cognitive Science. Trends in Cognitive Sciences 17, 348–360 (2013), doi:10.1016/j.tics.2013.04.010CrossRefGoogle Scholar
  4. [Bollobás(1998)]
    Bollobás, B.: Modern Graph Theory. Graduate Texts in Mathematics. Springer, New York (1998)CrossRefzbMATHGoogle Scholar
  5. [Broder(1989)]
    Broder, A.: Generating Random Spanning Trees. In: Symp. Foundations of Computer Sci., pp. 442–447. IEEE, New York (1989)Google Scholar
  6. [Bunge(2013)]
    Bunge, M.: La ciencia. Su método y su filosofía. Laetoli, Pamplona (2013)Google Scholar
  7. [Burnham and Anderson(2002)]
    Burnham, K.P., Anderson, D.R.: Model Selection and Multimodel Inference. A Practical Information-theoretic Approach, 2nd edn. Springer, New York (2002)zbMATHGoogle Scholar
  8. [Chen et al.(2009)]
    Chen, W.Y.C., Han, H.S.W., Reidys, C.M.: Random k-noncrossing RNA Structures. Proceedings of the National Academy of Sciences 106(52), 22061–22066 (2009), doi:10.1073/pnas.0907269106MathSciNetCrossRefzbMATHGoogle Scholar
  9. [Chomsky(1965)]
    Chomsky, N.: Aspects of the Theory of Syntax. MIT Press, Cambridge (1965)Google Scholar
  10. [Chomsky(1995)]
    Chomsky, N.: The Minimalist Program. MIT Press (1995)Google Scholar
  11. [Christiansen and Chater(1999)]
    Christiansen, M.H., Chater, N.: Toward a Connectionist Model of Recursion in Human Linguistic Performance. Cognitive Science 23(2), 157–205 (1999), doi:10.1207/s15516709cog2302_2CrossRefGoogle Scholar
  12. [Chung(1984)]
    Chung, F.R.K.: On Optimal Linear Arrangements of Trees. Comp. & Maths. with Appls. 10(1), 43–60 (1984), doi:10.1016/0898-1221(84)90085-3CrossRefzbMATHGoogle Scholar
  13. [Culicover and Jackendoff(2010)]
    Culicover, P.W., Jackendoff, R.: Quantitative Methods Alone Are not Enough: Response to Gibson and Fedorenko. Trends in Cognitive Sciences 14(6), 234–235 (2010), doi:10.1016/j.tics.2010.03.012CrossRefGoogle Scholar
  14. [Evans and Levinson(2009)]
    Evans, N., Levinson, S.C.: The Myth of Language Universals: Language Diversity and its Importance for Cognitive Science. Behavioral and Brain Sciences 32, 429–492 (2009), doi:10.1017/S0140525X0999094XCrossRefGoogle Scholar
  15. [Ferrer i Cancho and Solé(2003)]
    Ferrer i Cancho, R., Solé, R.V.: Optimization in Complex Networks. In: Pastor-Satorras, R., Rubí, J.M., Díaz-Guilera, A. (eds.) Statistical Mechanics of Complex Networks. Lecture Notes in Physics, vol. 625, pp. 114–125. Springer, Berlin (2003), doi:10.1007/b12331CrossRefGoogle Scholar
  16. [Ferrer-i-Cancho(2004)]
    Ferrer-i-Cancho, R.: Euclidean Distance between Syntactically Linked Words. Physical Review E 70, 056135 (2004), doi:10.1103/PhysRevE.70.056135Google Scholar
  17. [Ferrer-i-Cancho(2006)]
    Ferrer-i-Cancho, R.: Why Do Syntactic Links not Cross? Europhysics Letters 76(6), 1228–1235 (2006), doi:10.1209/epl/i2006-10406-0Google Scholar
  18. [Ferrer-i-Cancho(2013a)]
    Ferrer-i-Cancho, R.: Hubiness, Length, Crossings and Their Relationships in Dependency Trees. Glottometrics 25, 1–21 (2013a)Google Scholar
  19. [Ferrer-i-Cancho(2013b)]
    Ferrer-i-Cancho, R.: Random Crossings in Dependency Trees (2013b), http://arxiv.org/abs/1305.4561
  20. [Ferrer-i-Cancho(2013c)]
    Ferrer-i-Cancho, R.: The Optimality of Attaching Unlinked Labels to Unlinked Objects (2013c), http://arxiv.org/abs/1310.5884
  21. [Ferrer-i-Cancho(2014)]
    Ferrer-i-Cancho, R.: Why Might SOV Be Initially Preferred and Then Lost or Recovered? A Theoretical Framework. In: Cartmill, E.A., Roberts, S., Lyn, H., Cornish, H. (eds.) The Evolution of Language – Proceedings of the 10th International Conference (EVOLANG10). Evolution of Language Conference (Evolang 2014), April 14-17, pp. 66–73. Wiley, Vienna (2014), doi:10.1142/9789814603638_0007Google Scholar
  22. [Ferrer-i-Cancho(2015)]
    Ferrer-i-Cancho, R.: The Placement of the Head that Minimizes Online Memory: a Complex Systems Approach. Language Dynamics and Change 4(2) (in press, 2015)Google Scholar
  23. [Ferrer-i-Cancho and Elvevåg(2009)]
    Ferrer-i-Cancho, R., Elvevåg, B.: Random Texts Do not Exhibit the Real Zipf’s-law-like Rank Distribution. PLoS ONE 5(4), e9411 (2009), doi:10.1371/journal.pone.0009411Google Scholar
  24. [Ferrer-i-Cancho, Forns, et al.(2013)]
    Ferrer-i-Cancho, R., Forns, N., Hernández-Fernández, A., Bel-Enguix, G., Baixeries, J.: The Challenges of Statistical Patterns of Language: the Case of Menzerath’s law in Genomes. Complexity 18(3), 11–17 (2013), doi:10.1002/cplx.21429CrossRefGoogle Scholar
  25. [Ferrer-i-Cancho et al.(2013)Ferrer-i-Cancho, Hernández-Fernández, Lusseau, Agoramoorthy, Hsu, and Semple]
    Ferrer-i-Cancho, R., Hernández-Fernández, A., Lusseau, D., Agoramoorthy, G., Hsu, M.J., Semple, S.: Compression as a Universal Principle of Animal Behavior. Cognitive Science 37(8), 1565–1578 (2013), doi:10.1111/cogs.12061CrossRefGoogle Scholar
  26. [Ferrer-i-Cancho and Liu(2014)]
    Ferrer-i-Cancho, R., Liu, H.: The Risks of Mixing Dependency Lengths from Sequences of Different Length. Glottotheory 5(2), 143–155 (2014), doi:10.1515/glot-2014-0014CrossRefGoogle Scholar
  27. [Ferrer-i-Cancho and Moscoso del Prado Martín(2011)]
    Ferrer-i-Cancho, R., Moscoso del Prado Martín, F.: Information Content Versus Word Length in Random Typing. Journal of Statistical Mechanics, L12002 (2011), doi:10.1088/1742-5468/2013/07/L07001Google Scholar
  28. [Frank et al.(2012)Frank, Bod, and Christiansen]
    Frank, S.L., Bod, R., Christiansen, M.H.: How hierarchical is language use? Proceedings of the Royal Society B: Biological Sciences 279, 4522–4531 (2012), doi:10.1098/rspb.2012.1741CrossRefGoogle Scholar
  29. [Gell-Mann and Ruhlen(2011)]
    Gell-Mann, M., Ruhlen, M.: The Origin and Evolution of Word Order. Proceedings of the National Academy of Sciences USA 108(42), 17290–17295 (2011), doi:10.1073/pnas.1113716108CrossRefzbMATHGoogle Scholar
  30. [Gibson(2000)]
    Gibson, E.: The Dependency Locality Theory: a Distance-based Theory of Linguistic Complexity. In: Image, Language, Brain, pp. 95–126. The MIT Press, Cambridge (2000)Google Scholar
  31. [Gibson and Fedorenko(2010)]
    Gibson, E., Fedorenko, E.: Weak Quantitative Standards in Linguistics Research. Trends in Cognitive Sciences 14(6), 233–234 (2010), doi:10.1016/j.tics.2010.03.005CrossRefGoogle Scholar
  32. [Gibson and Warren(2004)]
    Gibson, E., Warren, T.: Reading Time Evidence for Intermediate Linguistic Structure in Long-Distance Dependencies. Syntax 7, 55–78 (2004), doi:10.1111/j.1368-0005.2004.00065.xCrossRefGoogle Scholar
  33. [Goldberg(2003)]
    Goldberg, A.E.: Constructions: a New Theoretical Approach to Language. Trends in Cognitive Sciences 7(5), 219–224 (2003), doi:10.1016/S1364-6613(03)00080-9CrossRefGoogle Scholar
  34. [Gómez-Rodríguez et al.(2014)Gómez-Rodríguez, Fernández-González, and Bilbao]
    Gómez-Rodríguez, C., Fernández-González, D., Bilbao, V.M.D.: Undirected Dependency Parsing. Computational Intelligence (2014), doi:10.1111/coin.12027Google Scholar
  35. [Hauser et al.(2002)Hauser, Chomsky, and Fitch]
    Hauser, M.D., Chomsky, N., Fitch, W.T.: The Faculty of Language: What Is It, Who Has It and How Did It Evolve? Science 298, 1569–1579 (2002), doi:10.1126/science.298.5598.1569CrossRefGoogle Scholar
  36. [Hawkins(1994)]
    Hawkins, J.A.: A Performance Theory of Order and Constituency. Cambridge University Press, New York (1994)Google Scholar
  37. [Hawkins(1998)]
    Hawkins, J.A.: Some Issues in a Performance Theory of Word Order. In: Siewierska, A. (ed.) Constituent Order in the Languages of Europe. Mouton de Gruyter, Berlin (1998)Google Scholar
  38. [Hawkins(2004)]
    Hawkins, J.A.: Efficiency and Complexity in Grammars. Oxford University Press, Oxford (2004)CrossRefGoogle Scholar
  39. [Hays(1964)]
    Hays, D.: Dependency Theory: a Formalism and Some Observations. Language 40, 511–525 (1964)CrossRefGoogle Scholar
  40. [Hochberg and Stallmann(2003)]
    Hochberg, R.A., Stallmann, M.F.: Optimal One-page Tree Embeddings in Linear Time. Information Processing Letters 87, 59–66 (2003), doi:10.1016/S0020-0190(03)00261-8MathSciNetCrossRefzbMATHGoogle Scholar
  41. [Hopper(1998)]
    Hopper, P.J.: Emergent Grammar. In: Tomasello, M. (ed.) The New Psychology of Language: Cognitive and Functional Approaches to Language Structure, pp. 155–175. Lawrence Erlbaum, Mahwah (1998)Google Scholar
  42. [Hudson(1984)]
    Hudson, R.: Word Grammar. Blackwell, Oxford (1984)Google Scholar
  43. [Hudson(2007)]
    Hudson, R.: Language Networks. The New Word Grammar. Oxford University Press, Oxford (2007)Google Scholar
  44. [Hurford(2012)]
    Hurford, J.R.: Chapter 3. Syntax in the Light of Evolution. In: The Origins of Grammar. Language in the Light of Evolution II, pp. 175–258. Oxford University Press, Oxford (2012)Google Scholar
  45. [Jackendoff(1999)]
    Jackendoff, R.: Foundations of Language. Oxford University Press, Oxford (1999)Google Scholar
  46. [Köhler(2005)]
    Köhler, R.: Synergetic Linguistics. In: Quantitative Linguistik. Ein internationals Handbuch. Quantitative Linguistics: An International Handbook, pp. 760–775. Walter de Gruyter, Berlin (2005)Google Scholar
  47. [Lecerf(1960)]
    Lecerf, Y.: Programme des Conflits - Modèle des Conflits. Rapport CETIS No. 4. Euratom, pp. 1–24 (1960)Google Scholar
  48. [Levy et al.(2012)Levy, Fedorenko, Breen, and Gibson]
    Levy, R., Fedorenko, E., Breen, M., Gibson, E.: The Processing of Extraposed Structures in English. Cognition 122(1), 12–36 (2012), doi:10.1016/j.cognition.2011.07.012CrossRefGoogle Scholar
  49. [Liu(2007)]
    Liu, H.: Probability Distribution of Dependency Distance. Glottometrics 15, 1–12 (2007)zbMATHGoogle Scholar
  50. [Liu(2008)]
    Liu, H.: Dependency Distance as a Metric of Language Comprehension Difficulty. Journal of Cognitive Science 9, 159–191 (2008)Google Scholar
  51. [Liu(2010)]
    Liu, H.: Dependency Direction as a Means of Word-order Typology: A Method Based on Dependency Treebanks. Lingua 120(6), 1567–1578 (2010), doi:10.1016/j.lingua.2009.10.001CrossRefGoogle Scholar
  52. [Manning(2002)]
    Manning, C.D.: Probabilistic Syntax. In: Bod, R., Hay, J., Jannedy, S. (eds.) Probabilistic Linguistics, pp. 289–341. MIT Press, Cambridge (2002)Google Scholar
  53. [McDonald et al.(2005)McDonald, Pereira, Ribarov, and Hajič]
    McDonald, R., Pereira, F., Ribarov, K., Hajič, J.: Non-projective Dependency Parsing Using Spanning Tree Algorithms. In: Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing, HLT 2005, pp. 523–530. Association for Computational Linguistics, Vancouver (2005), doi:10.3115/1220575.1220641CrossRefGoogle Scholar
  54. [Mel’čuk(1988)]
    Mel’čuk, I.: Dependency Syntax: Theory and Practice. State of New York University Press, Albany (1988)Google Scholar
  55. [Miller(1968)]
    Miller, G.A.: Introduction. In: Zipf, G.K. (ed.) The Psycho-Biology of Language: an Introduction to Dynamic Psychology, pp. v–x. MIT Press, Cambridge (1968)Google Scholar
  56. [Miller and Chomsky(1963)]
    Miller, G.A., Chomsky, N.: Finitary Models of Language Users. In: Luce, R.D., Bush, R., Galanter, E. (eds.) Handbook of Mathematical Psychology, vol. 2, pp. 419–491. Wiley, New York (1963)Google Scholar
  57. [Molloy and Reed(1995)]
    Molloy, M., Reed, B.: A Critical Point for Random Graphs with a Given Degree Sequence. Random Structures and Algorithms 6, 161–180 (1995), doi:10.1002/rsa.3240060204MathSciNetCrossRefzbMATHGoogle Scholar
  58. [Molloy and Reed(1998)]
    Molloy, M., Reed, B.: The Size of the Largest Component of a Random Graph on a Fixed Degree Sequence. Combinatorics, Probability and Computing 7, 295–306 (1998), doi:10.1017/S0963548398003526MathSciNetCrossRefzbMATHGoogle Scholar
  59. [Moon(1970)]
    Moon, J.: Counting Labelled Trees. Canadian Math. Cong. (1970)Google Scholar
  60. [Morrill(2000)]
    Morrill, G.: Incremental Processing and Acceptability. Computational Linguistics 25(3), 319–338 (2000), doi:10.1162/089120100561728CrossRefGoogle Scholar
  61. [Morrill et al.(2009)Morrill, Valentín, and Fadda]
    Morrill, G., Valentín, O., Fadda, M.: Dutch Grammar and Processing: A Case Study in TLG. In: Bosch, P., Gabelaia, D., Lang, J. (eds.) TbiLLC 2007. LNCS, vol. 5422, pp. 272–286. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  62. [Moscoso del Prado(2013)]
    Moscoso del Prado, F.: The Missing Baselines in Arguments for the Optimal Efficiency of Languages. In: Knauff, M., Pauen, M., Sebanz, N., Wachsmuth, I. (eds.) Proceedings of the 35th Annual Conference of the Cognitive Science Society, pp. 1032–1037. Cognitive Science Society, Austin (2013)Google Scholar
  63. [Newman et al.(2001)]
    Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Random Graphs with Arbitrary Degree Distribution and Their Applications. Phys. Rev. E 64, 026118 (2001), doi:10.1103/PhysRevE.64.026118Google Scholar
  64. [Newmeyer(2001)]
    Newmeyer, F.J.: The Prague School and North American Functionalist Approaches to Syntax. Journal of Linguistics 37, 101–126 (2001), doi:10.1017/S0022226701008593CrossRefGoogle Scholar
  65. [Newmeyer(2003)]
    Newmeyer, F.J.: Grammar is Grammar and Usage is Usage. Language 79, 682–707 (2003), doi:10.1353/lan.2003.0260CrossRefGoogle Scholar
  66. [Niyogi and Berwick(1995)]
    Niyogi, P., Berwick, R.C.: A Note on Zipf’s Law, Natural Languages, and Noncoding DNA Regions. A.I. Memo No. 1530/C.B.C.L. Paper No.118 (1995)Google Scholar
  67. [Noy(1998)]
    Noy, M.: Enumeration of Noncrossing Trees on a Circle. Discrete Mathematics 180, 301–313 (1998), doi:10.1016/S0012-365X(97)00121-0MathSciNetCrossRefzbMATHGoogle Scholar
  68. [Piantadosi et al.(2011)Piantadosi, Tily, and Gibson]
    Piantadosi, S.T., Tily, H., Gibson, E.: Word Lengths are Optimized for Efficient Communication. Proceedings of the National Academy of Sciences 108(9), 3526–3529 (2011)CrossRefGoogle Scholar
  69. [Piantadosi and Gibson(2014)]
    Piantadosi, S.T., Gibson, E.: Quantitative Standards for Absolute Linguistic Universals. Cognitive Science 38(4), 736–756 (2014), doi:10.1111/cogs.12088CrossRefGoogle Scholar
  70. [Seoane(2013)]
    Seoane, N.J.A.: Number of Trees with n Unlabeled Nodes. In: The On-Line Encyclopedia of Integer Sequences (2013), http://oeis.org/A000055
  71. [Solé(2010)]
    Solé, R.V.: Genome Size, Self-organization and DNA’s Dark Matter. Complexity 16(1), 20–23 (2010), doi:10.1002/cplx.20326CrossRefGoogle Scholar
  72. [Suzuki et al.(2005)]
    Suzuki, R., Tyack, P.L., Buck, J.: The Use of Zipf’s Law in Animal Communication Analysis. Anim. Behav. 69, 9–17 (2005), doi:10.1016/j.anbehav.2004.08.004CrossRefGoogle Scholar
  73. [Uriagereka(1998)]
    Uriagereka, J.: Rhyme and Reason. An Introduction to Minimalist Syntax. The MIT Press, Cambridge (1998)Google Scholar
  74. [de Vries et al.(2012)de Vries, Petersson, Geukes, Zwitserlood, and Christiansen]
    de Vries, M.H., Petersson, K.M., Geukes, S., Zwitserlood, P., Christiansen, M.H.: Processing Multiple Non-adjacent Dependencies: Evidence from Sequence Learning. Philosophical Transactions of the Royal Society B: Biological Sciences 367(1598), 2065–2076 (2012), doi:10.1098/rstb.2011.0414CrossRefGoogle Scholar
  75. [Zipf(1949)]
    Zipf, G.K.: Human Behaviour and the Principle of Least Effort. Addison-Wesley, Cambridge (1949)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Complexity and Quantitative Linguistics Lab, LARCA Research Group, Departament de Ciències de la ComputacióUniversitat Politècnica de Catalunya (UPC)BarcelonaSpain

Personalised recommendations