Advertisement

Open Fractures: Initial Management

  • Michael FrinkEmail author
  • Steffen Ruchholtz

Abstract

Open fractures are commonly associated with additional major injury following high-energy mechanisms. A thorough evaluation of the local injury as well as considering the patient’s status represents the basis for therapeutic steps. further Careful debridement and irrigation using pressure pulsatile lavage should be performed within the first 12 h. Systemic antibiotic administration should be performed as early as possible for infection prevention. Dependent on the patient’s condition and local injury pattern, fracture stabilization should be performed with external or internal stabilization devices. For type I and II injuries primary wound closure is possible, in type III injuries temporary wound closure using negative-pressure wound therapy should be performed.

Keywords

Polytrauma Open fracture Irrigation Debridement Antibiotic therapy Fracture stabilization Wound closure 

References

  1. 1.
    Keeman JN. Treatment of open fractures before Lister and the management of the fatal leg fracture of Admiral Michiel Adriaensz de Ruyter, 1676. Ned Tijdschr Geneeskd. 2004;148(52):2607–15.PubMedGoogle Scholar
  2. 2.
    Pape HC, Webb LX. History of open wound and fracture treatment. J Orthop Trauma. 2008;22(10 Suppl):S133–4.PubMedCrossRefGoogle Scholar
  3. 3.
    Stansbury LG, Branstetter JG, Lalliss SJ. Amputation in military trauma surgery. J Trauma. 2007;63(4):940–4.PubMedCrossRefGoogle Scholar
  4. 4.
    Pailler JL, Labeeu F. Gas gangrene: a military disease? Acta Chir Belg. 1986;86(2):63–71.PubMedGoogle Scholar
  5. 5.
    Court-Brown CM, Rimmer S, Prakash U, McQueen MM. The epidemiology of open long bone fractures. Injury. 1998;29(7):529–34.PubMedCrossRefGoogle Scholar
  6. 6.
    Howard M, Court-Brown CM. Epidemiology and management of open fractures of the lower limb. Br J Hosp Med. 1997;57(11):582–7.PubMedGoogle Scholar
  7. 7.
    Chung KC, Saddawi-Konefka D, Haase SC, Kaul G. A cost-utility analysis of amputation versus salvage for Gustilo type IIIB and IIIC open tibial fractures. Plast Reconstr Surg. 2009;124(6):1965–73.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Gosselin RA, Roberts I, Gillespie WJ. Antibiotics for preventing infection in open limb fractures. Cochrane Database Syst Rev. 2004;1, CD003764.Google Scholar
  9. 9.
    Branco BC, Inaba K, Barmparas G, Schnuriger B, Lustenberger T, Talving P, et al. Incidence and predictors for the need for fasciotomy after extremity trauma: a 10-year review in a mature level I trauma centre. Injury. 2011;42(10):1157–63.PubMedCrossRefGoogle Scholar
  10. 10.
    Frink M, Hildebrand F, Krettek C, Brand J, Hankemeier S. Compartment syndrome of the lower leg and foot. Clin Orthop Relat Res. 2010;468(4):940–50.PubMedCrossRefGoogle Scholar
  11. 11.
    VELISKAKIS KP. Primary internal fixation in open fractures of the tibal shaft; the problem of wound healing. J Bone Joint Surg Br. 1959;41-B(2):342–54.PubMedGoogle Scholar
  12. 12.
    Gustilo RB, Anderson JT. Prevention of infection in the treatment of one thousand and twenty-five open fractures of long bones: retrospective and prospective analyses. J Bone Joint Surg Am. 1976;58(4):453–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Gustilo RB, Mendoza RM, Williams DN. Problems in the management of type III (severe) open fractures: a new classification of type III open fractures. J Trauma. 1984;24(8):742–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Horn BD, Rettig ME. Interobserver reliability in the Gustilo and Anderson classification of open fractures. J Orthop Trauma. 1993;7(4):357–60.PubMedCrossRefGoogle Scholar
  15. 15.
    Brumback RJ, Jones AL. Interobserver agreement in the classification of open fractures of the tibia. The results of a survey of two hundred and forty-five orthopaedic surgeons. J Bone Joint Surg Am. 1994;76(8):1162–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Orthopaedic Trauma Association: Open Fracture Study Group. A new classification scheme for open fractures. J Orthop Trauma. 2010;24(8):457–64.Google Scholar
  17. 17.
    Agel J, Evans AR, Marsh JL, Decoster TA, Lundy DW, Kellam JF, et al. The OTA open fracture classification: a study of reliability and agreement. J Orthop Trauma. 2013;27(7):379–84.PubMedCrossRefGoogle Scholar
  18. 18.
    Agel J, Rockwood T, Barber R, Marsh JL. Potential predictive ability of the orthopedic trauma association open fracture classification. J Orthop Trauma. 2014;28(5):300–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Tanner J, Norrie P, Melen K. Preoperative hair removal to reduce surgical site infection. Cochrane Database Syst Rev. 2011;11, CD004122.Google Scholar
  20. 20.
    Ricci WM, Collinge C, Streubel PN, McAndrew CM, Gardner MJ. A comparison of more and less aggressive bone debridement protocols for the treatment of open supracondylar femur fractures. J Orthop Trauma. 2013;27(12):722–5.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Melvin JS, Dombroski DG, Torbert JT, Kovach SJ, Esterhai JL, Mehta S. Open tibial shaft fractures: I. Evaluation and initial wound management. J Am Acad Orthop Surg. 2010;18(1):10–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Museru LM, Kumar A, Ickler P. Comparison of isotonic saline, distilled water and boiled water in irrigation of open fractures. Int Orthop. 1989;13(3):179–80.PubMedCrossRefGoogle Scholar
  23. 23.
    Anglen JO. Comparison of soap and antibiotic solutions for irrigation of lower-limb open fracture wounds. A prospective, randomized study. J Bone Joint Surg Am. 2005;87(7):1415–22.PubMedGoogle Scholar
  24. 24.
    Rosenstein BD, Wilson FC, Funderburk CH. The use of bacitracin irrigation to prevent infection in postoperative skeletal wounds. An experimental study. J Bone Joint Surg Am. 1989;71(3):427–30.PubMedCrossRefGoogle Scholar
  25. 25.
    Rogers DM, Blouin GS, O’Leary JP. Povidone-iodine wound irrigation and wound sepsis. Surg Gynecol Obstet. 1983;157(5):426–30.PubMedGoogle Scholar
  26. 26.
    Gilmore OJ, Sanderson PJ. Prophylactic interparietal povidone-iodine in abdominal surgery. Br J Surg. 1975;62(10):792–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Vallance S, Waldron R. Antiseptic vs. saline lavage in purulent and faecal peritonitis. J Hosp Infect. 1985;6(Suppl A):87–91.PubMedCrossRefGoogle Scholar
  28. 28.
    Edmiston Jr CE, Bruden B, Rucinski MC, Henen C, Graham MB, Lewis BL. Reducing the risk of surgical site infections: does chlorhexidine gluconate provide a risk reduction benefit? Am J Infect Control. 2013;41(5 Suppl):S49–55.PubMedCrossRefGoogle Scholar
  29. 29.
    Penn-Barwell JG, Murray CK, Wenke JC. Comparison of the antimicrobial effect of chlorhexidine and saline for irrigating a contaminated open fracture model. J Orthop Trauma. 2012;26(12):728–32.PubMedCrossRefGoogle Scholar
  30. 30.
    Gaines RJ, DeMaio M, Peters D, Hasty J, Blanks J. Management of contaminated open fractures: a comparison of two types of irrigation in a porcine model. J Trauma Acute Care Surg. 2012;72(3):733–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Owens BD, White DW, Wenke JC. Comparison of irrigation solutions and devices in a contaminated musculoskeletal wound survival model. J Bone Joint Surg Am. 2009;91(1):92–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Petrisor B, Sun X, Bhandari M, Guyatt G, Jeray KJ, Sprague S, et al. Fluid lavage of open wounds (FLOW): a multicenter, blinded, factorial pilot trial comparing alternative irrigating solutions and pressures in patients with open fractures. J Trauma. 2011;71(3):596–606.PubMedGoogle Scholar
  33. 33.
    Anglen JO. Wound irrigation in musculoskeletal injury. J Am Acad Orthop Surg. 2001;9(4):219–26.PubMedCrossRefGoogle Scholar
  34. 34.
    Petrisor B, Jeray K, Schemitsch E, Hanson B, Sprague S, Sanders D, et al. Fluid lavage in patients with open fracture wounds (FLOW): an international survey of 984 surgeons. BMC Musculoskelet Disord. 2008;9:7.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Boyd III JI, Wongworawat MD. High-pressure pulsatile lavage causes soft tissue damage. Clin Orthop Relat Res. 2004;427:13–7.CrossRefGoogle Scholar
  36. 36.
    Hassinger SM, Harding G, Wongworawat MD. High-pressure pulsatile lavage propagates bacteria into soft tissue. Clin Orthop Relat Res. 2005;439:27–31.PubMedCrossRefGoogle Scholar
  37. 37.
    Bhandari M, Adili A, Lachowski RJ. High pressure pulsatile lavage of contaminated human tibiae: an in vitro study. J Orthop Trauma. 1998;12(7):479–84.PubMedCrossRefGoogle Scholar
  38. 38.
    Bhandari M, Schemitsch EH, Adili A, Lachowski RJ, Shaughnessy SG. High and low pressure pulsatile lavage of contaminated tibial fractures: an in vitro study of bacterial adherence and bone damage. J Orthop Trauma. 1999;13(8):526–33.PubMedCrossRefGoogle Scholar
  39. 39.
    Caprise Jr PA, Miclau T, Dahners LE, Dirschl DR. High-pressure pulsatile lavage irrigation of contaminated fractures: effects on fracture healing. J Orthop Res. 2002;20(6):1205–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Adili A, Bhandari M, Schemitsch EH. The biomechanical effect of high-pressure irrigation on diaphyseal fracture healing in vivo. J Orthop Trauma. 2002;16(6):413–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Gustilo RB, Merkow RL, Templeman D. The management of open fractures. J Bone Joint Surg Am. 1990;72(2):299–304.PubMedCrossRefGoogle Scholar
  42. 42.
    Schenker ML, Yannascoli S, Baldwin KD, Ahn J, Mehta S. Does timing to operative debridement affect infectious complications in open long-bone fractures? a systematic review. J Bone Joint Surg Am. 2012;94(12):1057–64.PubMedCrossRefGoogle Scholar
  43. 43.
    Skaggs DL, Friend L, Alman B, Chambers HG, Schmitz M, Leake B, et al. The effect of surgical delay on acute infection following 554 open fractures in children. J Bone Joint Surg Am. 2005;87(1):8–12.PubMedGoogle Scholar
  44. 44.
    Singh J, Rambani R, Hashim Z, Raman R, Sharma HK. The relationship between time to surgical debridement and incidence of infection in grade III open fractures. Strategies Trauma Limb Reconstr. 2012;7(1):33–7.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Hoff WS, Bonadies JA, Cachecho R, Dorlac WC. East Practice Management Guidelines Work Group: update to practice management guidelines for prophylactic antibiotic use in open fractures. J Trauma. 2011;70(3):751–4.PubMedCrossRefGoogle Scholar
  46. 46.
    Hauser CJ, Adams Jr CA, Eachempati SR. Surgical Infection Society guideline: prophylactic antibiotic use in open fractures: an evidence-based guideline. Surg Infect (Larchmt). 2006;7(4):379–405.CrossRefGoogle Scholar
  47. 47.
    Obremskey WT, Molina CS, Collinge C, Tornetta III P, Sagi C, Schmidt A, et al. Current practice in the initial management of open fractures among orthopaedic trauma surgeons. J Orthop Trauma. 2013. [Epub ahead of print].Google Scholar
  48. 48.
    Thomas SH, Arthur AO, Howard Z, Shear ML, Kadzielski JL, Vrahas MS. Helicopter emergency medical services crew administration of antibiotics for open fractures. Air Med J. 2013;32(2):74–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Fassbender M, Minkwitz S, Kronbach Z, Strobel C, Kadow-Romacker A, Schmidmaier G, et al. Local gentamicin application does not interfere with bone healing in a rat model. Bone. 2013;55(2):298–304.PubMedCrossRefGoogle Scholar
  50. 50.
    Large TM, Douglas G, Erickson G, Grayson JK. Effect of negative pressure wound therapy on the elution of antibiotics from polymethylmethacrylate beads in a porcine simulated open femur fracture model. J Orthop Trauma. 2012;26(9):506–11.PubMedCrossRefGoogle Scholar
  51. 51.
    Henry SL, Ostermann PA, Seligson D. The prophylactic use of antibiotic impregnated beads in open fractures. J Trauma. 1990;30(10):1231–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Ostermann PA, Henry SL, Seligson D. Value of adjuvant local antibiotic administration in therapy of open fractures. A comparative analysis of 704 consecutive cases. Langenbecks Arch Chir. 1993;378(1):32–6.PubMedCrossRefGoogle Scholar
  53. 53.
    Ostermann PA, Henry SL, Seligson D. The role of local antibiotic therapy in the management of compound fractures. Clin Orthop Relat Res. 1993;295:102–11.Google Scholar
  54. 54.
    Ostermann PA, Seligson D, Henry SL. Local antibiotic therapy for severe open fractures. A review of 1085 consecutive cases. J Bone Joint Surg Br. 1995;77(1):93–7.PubMedGoogle Scholar
  55. 55.
    Moehring HD, Gravel C, Chapman MW, Olson SA. Comparison of antibiotic beads and intravenous antibiotics in open fractures. Clin Orthop Relat Res. 2000;372:254–61.CrossRefGoogle Scholar
  56. 56.
    Scalea TM, Boswell SA, Scott JD, Mitchell KA, Kramer ME, Pollak AN. External fixation as a bridge to intramedullary nailing for patients with multiple injuries and with femur fractures: damage control orthopedics. J Trauma. 2000;48(4):613–21.PubMedCrossRefGoogle Scholar
  57. 57.
    D’Alleyrand JC, O’Toole RV. The evolution of damage control orthopedics: current evidence and practical applications of early appropriate care. Orthop Clin North Am. 2013;44(4):499–507.PubMedCrossRefGoogle Scholar
  58. 58.
    Flierl MA, Stoneback JW, Beauchamp KM, Hak DJ, Morgan SJ, Smith WR, et al. Femur shaft fracture fixation in head-injured patients: when is the right time? J Orthop Trauma. 2010;24(2):107–14.PubMedCrossRefGoogle Scholar
  59. 59.
    Taeger G, Ruchholtz S, Waydhas C, Lewan U, Schmidt B, Nast-Kolb D. Damage control orthopedics in patients with multiple injuries is effective, time saving, and safe. J Trauma. 2005;59(2):409–16.PubMedCrossRefGoogle Scholar
  60. 60.
    Velazco A, Fleming LL. Open fractures of the tibia treated by the Hoffmann external fixator. Clin Orthop Relat Res. 1983;180:125–32.Google Scholar
  61. 61.
    Harwood PJ, Giannoudis PV, Probst C, Krettek C, Pape HC. The risk of local infective complications after damage control procedures for femoral shaft fracture. J Orthop Trauma. 2006;20(3):181–9.PubMedGoogle Scholar
  62. 62.
    Nowotarski PJ, Turen CH, Brumback RJ, Scarboro JM. Conversion of external fixation to intramedullary nailing for fractures of the shaft of the femur in multiply injured patients. J Bone Joint Surg Am. 2000;82(6):781–8.PubMedCrossRefGoogle Scholar
  63. 63.
    McGraw JM, Lim EV. Treatment of open tibial-shaft fractures. External fixation and secondary intramedullary nailing. J Bone Joint Surg Am. 1988;70(6):900–11.PubMedCrossRefGoogle Scholar
  64. 64.
    Blachut PA, Meek RN, O’Brien PJ. External fixation and delayed intramedullary nailing of open fractures of the tibial shaft. A sequential protocol. J Bone Joint Surg Am. 1990;72(5):729–35.PubMedCrossRefGoogle Scholar
  65. 65.
    Bhandari M, Guyatt GH, Swiontkowski MF, Schemitsch EH. Treatment of open fractures of the shaft of the tibia. J Bone Joint Su rg Br. 2001;83(1):62–8.CrossRefGoogle Scholar
  66. 66.
    Schemitsch EH, Bhandari M, Guyatt G, Sanders DW, Swiontkowski M, Tornetta P, et al. Prognostic factors for predicting outcomes after intramedullary nailing of the tibia. J Bone Joint Surg Am. 2012;94(19):1786–93.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Bach AW, Hansen Jr ST. Plates versus external fixation in severe open tibial shaft fractures. A randomized trial. Clin Orthop Relat Res. 1989;241:89–94.Google Scholar
  68. 68.
    Clifford RP, Beauchamp CG, Kellam JF, Webb JK, Tile M. Plate fixation of open fractures of the tibia. J Bone Joint Surg Br. 1988;70(4):644–8.PubMedGoogle Scholar
  69. 69.
    Kim JW, Oh CW, Jung WJ, Kim JS. Minimally invasive plate osteosynthesis for open fractures of the proximal tibia. Clin Orthop Surg. 2012;4(4):313–20.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Sohn OJ, Kang DH. Staged protocol in treatment of open distal tibia fracture: using lateral MIPO. Clin Orthop Surg. 2011;3(1):69–76.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Lister G, Scheker L. Emergency free flaps to the upper extremity. J Hand Surg Am. 1988;13(1):22–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Brown PW, Kinman PB. Gas gangrene in a metropolitan community. J Bone Joint Surg Am. 1974;56(7):1445–51.PubMedCrossRefGoogle Scholar
  73. 73.
    Levin LS, Erdmann D. Primary and secondary microvascular reconstruction of the upper extremity. Hand Clin. 2001;17(3):447–55, ix.PubMedGoogle Scholar
  74. 74.
    Godina M. Early microsurgical reconstruction of complex trauma of the extremities. Plast Reconstr Surg. 1986;78(3):285–92.PubMedCrossRefGoogle Scholar
  75. 75.
    Valenziano CP, Chattar-Cora D, O’Neill A, Hubli EH, Cudjoe EA. Efficacy of primary wound cultures in long bone open extremity fractures: are they of any value? Arch Orthop Trauma Surg. 2002;122(5):259–61.PubMedCrossRefGoogle Scholar
  76. 76.
    Faisham WI, Nordin S, Aidura M. Bacteriological study and its role in the management of open tibial fracture. Med J Malaysia. 2001;56(2):201–6.PubMedGoogle Scholar
  77. 77.
    Gopal S, Majumder S, Batchelor AG, Knight SL, De Boer P, Smith RM. Fix and flap: the radical orthopaedic and plastic treatment of severe open fractures of the tibia. J Bone Joint Surg Br. 2000;82(7):959–66.PubMedCrossRefGoogle Scholar
  78. 78.
    Ostermann PA, Henry SL, Seligson D. Timing of wound closure in severe compound fractures. Orthopedics. 1994;17(5):397–9.PubMedGoogle Scholar
  79. 79.
    Henley MB, Chapman JR, Agel J, Harvey EJ, Whorton AM, Swiontkowski MF. Treatment of type II, IIIA, and IIIB open fractures of the tibial shaft: a prospective comparison of unreamed interlocking intramedullary nails and half-pin external fixators. J Orthop Trauma. 1998;12(1):1–7.PubMedCrossRefGoogle Scholar
  80. 80.
    Khan MA, Jose RM, Taylor C, Ahmed W, Prinsloo D. Free radial forearm fasciocutaneous flap in the treatment of distal third tibial osteomyelitis. Ann Plast Surg. 2012;68(1):58–61.PubMedCrossRefGoogle Scholar
  81. 81.
    Patzakis MJ, Wilkins J, Moore TM. Considerations in reducing the infection rate in open tibial fractures. Clin Orthop Relat Res. 1983;178:36–41.Google Scholar
  82. 82.
    Levin LS. Early versus delayed closure of open fractures. Injury. 2007;38(8):896–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Borgquist O, Anesater E, Hedstrom E, Lee CK, Ingemansson R, Malmsjo M. Measurements of wound edge microvascular blood flow during negative pressure wound therapy using thermodiffusion and transcutaneous and invasive laser Doppler velocimetry. Wound Repair Regen. 2011;19(6):727–33.PubMedCrossRefGoogle Scholar
  84. 84.
    Horch RE, Gerngross H, Lang W, Mauckner P, Nord D, Peter RU, et al. Indications and safety aspects of vacuum-assisted wound closure. MMW Fortschr Med. 2005;147 Suppl 1:1–5.PubMedGoogle Scholar
  85. 85.
    DeFranzo AJ, Argenta LC, Marks MW, Molnar JA, David LR, Webb LX, et al. The use of vacuum-assisted closure therapy for the treatment of lower-extremity wounds with exposed bone. Plast Reconstr Surg. 2001;108(5):1184–91.PubMedCrossRefGoogle Scholar
  86. 86.
    Assadian O, Assadian A, Stadler M, Diab-Elschahawi M, Kramer A. Bacterial growth kinetic without the influence of the immune system using vacuum-assisted closure dressing with and without negative pressure in an in vitro wound model. Int Wound J. 2010;7(4):283–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Moues CM, van den Bemd GJ, Heule F, Hovius SE. Comparing conventional gauze therapy to vacuum-assisted closure wound therapy: a prospective randomised trial. J Plast Reconstr Aesthet Surg. 2007;60(6):672–81.PubMedCrossRefGoogle Scholar
  88. 88.
    Dedmond BT, Kortesis B, Punger K, Simpson J, Argenta J, Kulp B, et al. The use of negative-pressure wound therapy (NPWT) in the temporary treatment of soft-tissue injuries associated with high-energy open tibial shaft fractures. J Orthop Trauma. 2007;21(1):11–7.PubMedCrossRefGoogle Scholar
  89. 89.
    Cheng HT, Hsu YC, Wu CI. Risk of infection with delayed wound coverage by using negative-pressure wound therapy in Gustilo Grade IIIB/IIIC open tibial fracture: an evidence-based review. J Plast Reconstr Aesthet Surg. 2013;66(6):876–8.PubMedCrossRefGoogle Scholar
  90. 90.
    Helfet DL, Howey T, Sanders R, Johansen K. Limb salvage versus amputation. Preliminary results of the Mangled Extremity Severity Score. Clin Orthop Relat Res. 1990;256:80–6.Google Scholar
  91. 91.
    Russell WL, Sailors DM, Whittle TB, Fisher Jr DF, Burns RP. Limb salvage versus traumatic amputation. A decision based on a seven-part predictive index. Ann Surg. 1991;213(5):473–80.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Howe Jr HR, Poole Jr GV, Hansen KJ, Clark T, Plonk GW, Koman LA, et al. Salvage of lower extremities following combined orthopedic and vascular trauma. A predictive salvage index. Am Surg. 1987;53(4):205–8.PubMedGoogle Scholar
  93. 93.
    McNamara MG, Heckman JD, Corley FG. Severe open fractures of the lower extremity: a retrospective evaluation of the Mangled Extremity Severity Score (MESS). J Orthop Trauma. 1994;8(2):81–7.PubMedCrossRefGoogle Scholar
  94. 94.
    Jain A, Glass GE, Ahmadi H, Mackey S, Simmons J, Hettiaratchy S, et al. Delayed amputation following trauma increases residual lower limb infection. J Plast Reconstr Aesthet Surg. 2013;66(4):531–7.PubMedCrossRefGoogle Scholar
  95. 95.
    Helgeson MD, Potter BK, Burns TC, Hayda RA, Gajewski DA. Risk factors for and results of late or delayed amputation following combat-related extremity injuries. Orthopedics. 2010;33(9):669.PubMedGoogle Scholar
  96. 96.
    Ly TV, Travison TG, Castillo RC, Bosse MJ, MacKenzie EJ. Ability of lower-extremity injury severity scores to predict functional outcome after limb salvage. J Bone Joint Surg Am. 2008;90(8):1738–43.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Bosse MJ, MacKenzie EJ, Kellam JF, Burgess AR, Webb LX, Swiontkowski MF, et al. A prospective evaluation of the clinical utility of the lower-extremity injury-severity scores. J Bone Joint Surg Am. 2001;83-A(1):3–14.PubMedCrossRefGoogle Scholar
  98. 98.
    McHenry TP, Holcomb JB, Aoki N, Lindsey RW. Fractures with major vascular injuries from gunshot wounds: implications of surgical sequence. J Trauma. 2002;53(4):717–21.PubMedCrossRefGoogle Scholar
  99. 99.
    Sonnergren HH, Strombeck L, Aldenborg F, Faergemann J. Aerosolized spread of bacteria and reduction of bacterial wound contamination with three different methods of surgical wound debridement: a pilot study. J Hosp Infect. 2013;85(2):112–7.PubMedCrossRefGoogle Scholar
  100. 100.
    Beardmore AA, Brooks DE, Wenke JC, Thomas DB. Effectiveness of local antibiotic delivery with an osteoinductive and osteoconductive bone-graft substitute. J Bone Joint Surg Am. 2005;87(1):107–12.PubMedGoogle Scholar
  101. 101.
    Lucke M, Schmidmaier G, Sadoni S, Wildemann B, Schiller R, Haas NP, et al. Gentamicin coating of metallic implants reduces implant-related osteomyelitis in rats. Bone. 2003;32(5):521–31.PubMedCrossRefGoogle Scholar
  102. 102.
    Fuchs T, Stange R, Schmidmaier G, Raschke MJ. The use of gentamicin-coated nails in the tibia: preliminary results of a prospective study. Arch Orthop Trauma Surg. 2011;131(10):1419–25.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Smith JK, Bumgardner JD, Courtney HS, Smeltzer MS, Haggard WO. Antibiotic-loaded chitosan film for infection prevention: a preliminary in vitro characterization. J Biomed Mater Res B Appl Biomater. 2010;94(1):203–11.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Kalicke T, Schierholz J, Schlegel U, Frangen TM, Koller M, Printzen G, et al. Effect on infection resistance of a local antiseptic and antibiotic coating on osteosynthesis implants: an in vitro and in vivo study. J Orthop Res. 2006;24(8):1622–40.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department for Trauma, Hand and Reconstructive SurgeryUniversity Medical CenterMarburgGermany

Personalised recommendations