Advertisement

Management of Spinal Fractures

  • Keith L. JacksonEmail author
  • Michael Van Hal
  • Joon Y. Lee
  • James D. Kang
Chapter

Abstract

Vertebral column fractures in the polytraumatized patient represent a heterogeneous group of injuries that vary in both severity and complexity. The timely identification and treatment of patient with these injuries is of the utmost importance as a missed or delayed diagnosis may lead to neurologic deterioration that is often irreversible. The specific set of risks associated with caring for this subset of patients requires collaboration between specialists from multiple disciplines of medicine. As such, all providers treating these severely injured patients should be familiar with key principles used to stabilize, diagnosis, and ultimately treat these injuries.

Keywords

Vertebral column fracture Spinal cord injury Cervical spine Thoracolumbar spine 

References

  1. 1.
    Burney RE, et al. Incidence, characteristics, and outcome of spinal cord injury at trauma centers in North America. Arch Surg. 1993;128(5):596–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Advanced trauma life support for doctors ATLS: manuals for coordinators and faculty. Chicago: American College of Surgeons; 2008.Google Scholar
  3. 3.
    Vaccaro AR, et al. Noncontiguous injuries of the spine. J Spinal Disord. 1992;5(3):320–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Davidoff G, et al. Assessment of closed head injury in trauma-related spinal cord injury. Paraplegia. 1986;24(2):97–104.PubMedCrossRefGoogle Scholar
  5. 5.
    Gomes E, Araújo R, Carniero A, Dias C, Lecky F, Costa-Pereira A. Mortality distribution in a trauma system: from data to health policy. Eur J Trauma Emerg Surg. 2008;34(6):561–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Jansson KA, et al. Thoracolumbar vertebral fractures in Sweden: an analysis of 13,496 patients admitted to hospital. Eur J Epidemiol. 2010;25(6):431–7.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Morris CG, McCoy EP, Lavery GG. Spinal immobilisation for unconscious patients with multiple injuries. BMJ. 2004;329(7464):495–9.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Reid DC, et al. Etiology and clinical course of missed spine fractures. J Trauma. 1987;27(9):980–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Determination of cervical spine stability in trauma patients. http://www.east.org/tpg/chap3u.pdf. EAST (Easatern Association for the Surgery of Trauma); 2009.
  10. 10.
    Green BA, Eismont FJ, O'Heir JT. Pre-hospital management of spinal cord injuries. Paraplegia. 1987;25(3):229–38.PubMedCrossRefGoogle Scholar
  11. 11.
    Davis JW, et al. Clearing the cervical spine in obtunded patients: the use of dynamic fluoroscopy. J Trauma. 1995;39(3):435–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Ching RP, et al. The effect of post-injury spinal position on canal occlusion in a cervical spine burst fracture model. Spine (Phila Pa 1976). 1997;22(15):1710–5.CrossRefGoogle Scholar
  13. 13.
    Amar AP, Levy ML. Pathogenesis and pharmacological strategies for mitigating secondary damage in acute spinal cord injury. Neurosurgery. 1999;44(5):1027–39;discussion 1039–40.PubMedCrossRefGoogle Scholar
  14. 14.
    Dolan EJ, Tator CH. The effect of blood transfusion, dopamine, and gamma hydroxybutyrate on posttraumatic ischemia of the spinal cord. J Neurosurg. 1982;56(3):350–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Ducker TB, Kindt GW, Kempf LG. Pathological findings in acute experimental spinal cord trauma. J Neurosurg. 1971;35(6):700–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Waring 3rd WP, et al. 2009 review and revisions of the international standards for the neurological classification of spinal cord injury. J Spinal Cord Med. 2010;33(4):346–52.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Crozier KS, et al. Spinal cord injury: prognosis for ambulation based on sensory examination in patients who are initially motor complete. Arch Phys Med Rehabil. 1991;72(2):119–21.PubMedGoogle Scholar
  18. 18.
    Kiwerski J, Weiss M. Neurological improvement in traumatic injuries of cervical spinal cord. Paraplegia. 1981;19(1):31–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Kakulas BA. Pathology of spinal injuries. Cent Nerv Syst Trauma. 1984;1(2):117–29.PubMedCrossRefGoogle Scholar
  20. 20.
    Ahn UM, et al. Cauda equina syndrome secondary to lumbar disc herniation: a meta-analysis of surgical outcomes. Spine (Phila Pa 1976). 2000;25(12):1515–22.CrossRefGoogle Scholar
  21. 21.
    Shapiro S. Medical realities of cauda equina syndrome secondary to lumbar disc herniation. Spine (Phila Pa 1976). 2000;25(3):348–51;discussion 352.CrossRefGoogle Scholar
  22. 22.
    Schunemann HJ, et al. An official ATS statement: grading the quality of evidence and strength of recommendations in ATS guidelines and recommendations. Am J Respir Crit Care Med. 2006;174(5):605–14.PubMedCrossRefGoogle Scholar
  23. 23.
    Gale SC, et al. The inefficiency of plain radiography to evaluate the cervical spine after blunt trauma. J Trauma. 2005;59(5):1121–5.PubMedCrossRefGoogle Scholar
  24. 24.
    McCulloch PT, et al. Helical computed tomography alone compared with plain radiographs with adjunct computed tomography to evaluate the cervical spine after high-energy trauma. J Bone Joint Surg Am. 2005;87(11):2388–94.PubMedGoogle Scholar
  25. 25.
    Holmes JF, Akkinepalli R. Computed tomography versus plain radiography to screen for cervical spine injury: a meta-analysis. J Trauma. 2005;58(5):902–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Hauser CJ, et al. Prospective validation of computed tomographic screening of the thoracolumbar spine in trauma. J Trauma. 2003;55(2):228–34;discussion 234–5.PubMedCrossRefGoogle Scholar
  27. 27.
    Antevil JL, et al. Spiral computed tomography for the initial evaluation of spine trauma: a new standard of care? J Trauma. 2006;61(2):382–7.PubMedCrossRefGoogle Scholar
  28. 28.
    White AA, Panjabi MM. Clinical biomechanics of the spine. 2nd ed. Philadelphia: Lippincott; 1990. xxiii, 722 p.Google Scholar
  29. 29.
    Blauth M, et al. Complex injuries of the spine. Orthopade. 1998;27(1):17–31.PubMedGoogle Scholar
  30. 30.
    McLain RF, Benson DR. Urgent surgical stabilization of spinal fractures in polytrauma patients. Spine (Phila Pa 1976). 1999;24(16):1646–54.CrossRefGoogle Scholar
  31. 31.
    Rihn JA, et al. A review of the TLICS system: a novel, user-friendly thoracolumbar trauma classification system. Acta Orthop. 2008;79(4):461–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Fassett DR, Dailey AT, Vaccaro AR. Vertebral artery injuries associated with cervical spine injuries: a review of the literature. J Spinal Disord Tech. 2008;21(4):252–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Biffl WL, et al. Western trauma association critical decisions in trauma: screening for and treatment of blunt cerebrovascular injuries. J Trauma. 2009;67(6):1150–3.PubMedCrossRefGoogle Scholar
  34. 34.
    Schmidt OI, et al. Closed head injury–an inflammatory disease? Brain Res Brain Res Rev. 2005;48(2):388–99.PubMedCrossRefGoogle Scholar
  35. 35.
    Mueller CA, et al. Vertebral artery injuries following cervical spine trauma: a prospective observational study. Eur Spine J. 2011;20(12):2202–9.Google Scholar
  36. 36.
    Cothren CC, et al. Cervical spine fracture patterns mandating screening to rule out blunt cerebrovascular injury. Surgery. 2007;141(1):76–82.PubMedCrossRefGoogle Scholar
  37. 37.
    Dunham CM, et al. Risks associated with magnetic resonance imaging and cervical collar in comatose, blunt trauma patients with negative comprehensive cervical spine computed tomography and no apparent spinal deficit. Crit Care. 2008;12(4):R89.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Stassen NA, et al. Magnetic resonance imaging in combination with helical computed tomography provides a safe and efficient method of cervical spine clearance in the obtunded trauma patient. J Trauma. 2006;60(1):171–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Diaz Jr JJ, et al. The early work-up for isolated ligamentous injury of the cervical spine: does computed tomography scan have a role? J Trauma. 2005;59(4):897–903;discussion 903–4.PubMedCrossRefGoogle Scholar
  40. 40.
    Management of acute spinal cord injuries in an intensive care unit or other monitored setting. Neurosurgery. 2002;50(3 Suppl):S51–7.Google Scholar
  41. 41.
    Heary RF, et al. Acute stabilization of the cervical spine by halo/vest application facilitates evaluation and treatment of multiple trauma patients. J Trauma. 1992;33(3):445–51.PubMedCrossRefGoogle Scholar
  42. 42.
    Barnett GH, Hardy RW. Gardner tongs and cervical traction. Med Instrum. 1982;16(6):291–2.PubMedGoogle Scholar
  43. 43.
    Gardner WJ. The principle of spring-loaded points for cervical traction. Technical note. J Neurosurg. 1973;39(4):543–4.PubMedCrossRefGoogle Scholar
  44. 44.
    Kang M, Vives MJ, Vaccaro AR. The halo vest: principles of application and management of complications. J Spinal Cord Med. 2003;26(3):186–92.PubMedCrossRefGoogle Scholar
  45. 45.
    Manthey DE. Halo traction device. Emerg Med Clin North Am. 1994;12(3):771–8.PubMedGoogle Scholar
  46. 46.
    Bracken MB, et al. Efficacy of methylprednisolone in acute spinal cord injury. JAMA. 1984;251(1):45–52.PubMedCrossRefGoogle Scholar
  47. 47.
    Bracken MB, et al. Methylprednisolone or naloxone treatment after acute spinal cord injury: 1-year follow-up data. Results of the second National Acute Spinal Cord Injury Study. J Neurosurg. 1992;76(1):23–31.PubMedCrossRefGoogle Scholar
  48. 48.
    George ER, et al. Failure of methylprednisolone to improve the outcome of spinal cord injuries. Am Surg. 1995;61(8):659–63;discussion 663–4.PubMedGoogle Scholar
  49. 49.
    Prendergast MR, et al. Massive steroids do not reduce the zone of injury after penetrating spinal cord injury. J Trauma. 1994;37(4):576–9;discussion 579–80.PubMedCrossRefGoogle Scholar
  50. 50.
    Qian T, et al. High-dose methylprednisolone may cause myopathy in acute spinal cord injury patients. Spinal Cord. 2005;43(4):199–203.PubMedCrossRefGoogle Scholar
  51. 51.
    Schneidereit NP, et al. Utility of screening for blunt vascular neck injuries with computed tomographic angiography. J Trauma. 2006;60(1):209–15;discussion 215–6.PubMedCrossRefGoogle Scholar
  52. 52.
    Gavin TM, et al. Biomechanical analysis of cervical orthoses in flexion and extension: a comparison of cervical collars and cervical thoracic orthoses. J Rehabil Res Dev. 2003;40(6):527–37.PubMedCrossRefGoogle Scholar
  53. 53.
    Agabegi SS, Asghar FA, Herkowitz HN. Spinal orthoses. J Am Acad Orthop Surg. 2010;18(11):657–67.PubMedCrossRefGoogle Scholar
  54. 54.
    Pape HC, et al. Impact of intramedullary instrumentation versus damage control for femoral fractures on immunoinflammatory parameters: prospective randomized analysis by the EPOFF study group. J Trauma. 2003;55(1):7–13.PubMedCrossRefGoogle Scholar
  55. 55.
    Rupp RE, et al. Thoracic and lumbar fractures associated with femoral shaft fractures in the multiple trauma patient. Occult presentations and implications for femoral fracture stabilization. Spine (Phila Pa 1976). 1994;19(5):556–60.CrossRefGoogle Scholar
  56. 56.
    Scalea TM, et al. External fixation as a bridge to intramedullary nailing for patients with multiple injuries and with femur fractures: damage control orthopedics. J Trauma. 2000;48(4):613–21;discussion 621–3.PubMedCrossRefGoogle Scholar
  57. 57.
    Pape HC, Giannoudis P, Krettek C. The timing of fracture treatment in polytrauma patients: relevance of damage control orthopedic surgery. Am J Surg. 2002;183(6):622–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Carlson GD, et al. Early time-dependent decompression for spinal cord injury: vascular mechanisms of recovery. J Neurotrauma. 1997;14(12):951–62.PubMedCrossRefGoogle Scholar
  59. 59.
    Delamarter RB, Sherman J, Carr JB. Pathophysiology of spinal cord injury. Recovery after immediate and delayed decompression. J Bone Joint Surg Am. 1995;77(7):1042–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Guha A, et al. Decompression of the spinal cord improves recovery after acute experimental spinal cord compression injury. Paraplegia. 1987;25(4):324–39.PubMedCrossRefGoogle Scholar
  61. 61.
    Fehlings MG, et al. Early versus delayed decompression for traumatic cervical spinal cord injury: results of the Surgical Timing in Acute Spinal Cord Injury Study (STASCIS). PLoS One. 2012;7(2), e32037.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Kaneda K, et al. Anterior decompression and stabilization with the Kaneda device for thoracolumbar burst fractures associated with neurological deficits. J Bone Joint Surg Am. 1997;79(1):69–83.PubMedCrossRefGoogle Scholar
  63. 63.
    Shono Y, McAfee PC, Cunningham BW. Experimental study of thoracolumbar burst fractures. A radiographic and biomechanical analysis of anterior and posterior instrumentation systems. Spine (Phila Pa 1976). 1994;19(15):1711–22.CrossRefGoogle Scholar
  64. 64.
    Mann KA, et al. A biomechanical investigation of short segment spinal fixation for burst fractures with varying degrees of posterior disruption. Spine (Phila Pa 1976). 1990;15(6):470–8.CrossRefGoogle Scholar
  65. 65.
    Stauffer ES, Wood RW, Kelly EG. Gunshot wounds of the spine: the effects of laminectomy. J Bone Joint Surg Am. 1979;61(3):389–92.PubMedCrossRefGoogle Scholar
  66. 66.
    Bono CM, Heary RF. Gunshot wounds to the spine. Spine J. 2004;4(2):230–40.PubMedCrossRefGoogle Scholar
  67. 67.
    Hebert JS, Burnham RS. The effect of polytrauma in persons with traumatic spine injury. A prospective database of spine fractures. Spine (Phila Pa 1976). 2000;25(1):55–60.CrossRefGoogle Scholar
  68. 68.
    McLain RF, Burkus JK, Benson DR. Segmental instrumentation for thoracic and thoracolumbar fractures: prospective analysis of construct survival and five-year follow-up. Spine J. 2001;1(5):310–23.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Keith L. Jackson
    • 1
    Email author
  • Michael Van Hal
    • 2
  • Joon Y. Lee
    • 3
  • James D. Kang
    • 2
  1. 1.Staff Spine SurgeonWomack Army Medical CenterFort BraggUSA
  2. 2.Department of Orthopaedic SurgeryUniversity of Pittsburgh Medical CenterPittsburghUSA
  3. 3.Division of Spine Surgery, Department of Orthopaedic SurgeryUniversity of Pittsburgh Medical CenterPittsburghUSA

Personalised recommendations