Skip to main content

Big Data and Network Medicine in COPD

  • Chapter
  • First Online:
COPD

Abstract

Big Data provides substantial technical challenges related to organizing, moving, storing, and analyzing vast amounts of information. Importantly, useful “Big Data” needs to be more than just a lot of data; it needs to have complex, accurate, and relevant information. Key sources of Big Data in COPD research include genetics, other Omics (e.g., transcriptomics, proteomics, metabolomics, and epigenetics), and imaging. Network science provides approaches that can assist in the analysis of Big Data. Based on graph theory, networks provide a useful structure to visualize and analyze relationships—both linear and nonlinear—between variables of interest. Network Medicine involves the application of network science approaches to diseases. Key components of Network Medicine include identifying molecular interactions, defining optimal disease phenotypes, and integrating multiple Omics data. These three approaches are utilized to define disease-related networks, which will be utilized to reclassify diseases like COPD based on their etiology instead of end-stage physiological and pathological manifestations. Finally, new treatments and preventative strategies will be developed using systems pharmacology approaches. Integration of multiple types of Big Data will be essential in Network Medicine, and leveraging both Omics and animal model experimental data can overcome the limitations of an individual method. To realize the potential of these exciting opportunities in Big Data and Network Medicine, we will need to restructure the way that we study the pathogenesis of COPD and the approaches that we utilize to develop new COPD treatments.

This work was supported by NIH Grants R01 HL089856, P01 HL105339, R01 HL113264, P01 HL114501, and R01 HL111759 to EKS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agusti A, Anto JM, Auffray C, Barbe F, Barreiro E, Dorca J, et al. Personalized respiratory medicine: exploring the horizon, addressing the issues. Summary of a BRN-AJRCCM workshop held in Barcelona on June 12, 2014. Am J Respir Crit Care Med. 2015;191(4):391–401.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Marx V. Biology: the big challenges of big data. Nature. 2013;498(7453):255–60.

    Article  CAS  PubMed  Google Scholar 

  3. Stephens ZD, Lee SY, Faghri F, Campbell RH, Zhai C, Efron MJ, et al. Big data: Astronomical or Genomical? PLoS Biol. 2015;13(7):e1002195.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Silverman EK, Mosley JD, Palmer LJ, Barth M, Senter JM, Brown A, et al. Genome-wide linkage analysis of severe, early-onset chronic obstructive pulmonary disease: airflow obstruction and chronic bronchitis phenotypes. Hum Mol Genet. 2002;11(6):623–32.

    Article  CAS  PubMed  Google Scholar 

  5. Silverman EK, Palmer LJ, Mosley JD, Barth M, Senter JM, Brown A, et al. Genomewide linkage analysis of quantitative spirometric phenotypes in severe early-onset chronic obstructive pulmonary disease. Am J Hum Genet. 2002;70(5):1229–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hardin M, Silverman EK. Chronic obstructive pulmonary disease genetics: a review of the past and a look into the future. J COPD Found. 2014;1(1):33–46.

    Article  Google Scholar 

  7. Cho MH, McDonald ML, Zhou X, Mattheisen M, Castaldi PJ, Hersh CP, et al. Risk loci for chronic obstructive pulmonary disease: a genome-wide association study and meta-analysis. Lancet Respir Med. 2014;2(3):214–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cho MH, Boutaoui N, Klanderman BJ, Sylvia JS, Ziniti JP, Hersh CP, et al. Variants in FAM13A are associated with chronic obstructive pulmonary disease. Nat Genet. 2010;42:200–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cho MH, Castaldi PJ, Hersh CP, Hobbs BD, Barr RG, Tal-Singer R, et al. A genome-wide association study of emphysema and airway quantitative imaging phenotypes. Am J Respir Crit Care Med. 2015;192(5):559–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pillai SG, Ge D, Zhu G, Kong X, Shianna KV, Need AC, et al. A genome-wide association study in chronic obstructive pulmonary disease (COPD): identification of two major susceptibility loci. PLoS Genet. 2009;5(3):e1000421.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Wilk JB, Chen TH, Gottlieb DJ, Walter RE, Nagle MW, Brandler BJ, et al. A genome-wide association study of pulmonary function measures in the Framingham Heart Study. PLoS Genet. 2009;5(3):e1000429.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Castaldi PJ, San Jose Estepar R, Mendoza CS, Hersh CP, Laird N, Crapo JD, et al. Distinct quantitative computed tomography emphysema patterns are associated with physiology and function in smokers. Am J Respir Crit Care Med. 2013;188(9):1083–90.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Castaldi PJ, Cho MH, San Jose Estepar R, McDonald ML, Laird N, Beaty TH, et al. Genome-wide association identifies regulatory loci associated with distinct local histogram emphysema patterns. Am J Respir Crit Care Med. 2014;190(4):399–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ryan DM, Vincent TL, Salit J, Walters MS, Agosto-Perez F, Shaykhiev R, et al. Smoking dysregulates the human airway basal cell transcriptome at COPD risk locus 19q13.2. PLoS One. 2014;9(2):e88051.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Cho MH, Castaldi PJ, Wan ES, Siedlinski M, Hersh CP, Demeo DL, et al. A genome-wide association study of COPD identifies a susceptibility locus on chromosome 19q13. Hum Mol Genet. 2012;21(4):947–57.

    Article  CAS  PubMed  Google Scholar 

  16. Kim WJ, Lim JH, Lee JS, Lee SD, Kim JH, Oh YM. Comprehensive analysis of transcriptome sequencing data in the lung tissues of COPD subjects. Int J Genomics. 2015;2015:9.

    Google Scholar 

  17. Telenga ED, Hoffmann RF, Ruben TK, Hoonhorst SJ, Willemse BW, van Oosterhout AJ, et al. Untargeted lipidomic analysis in chronic obstructive pulmonary disease. Uncovering sphingolipids. Am J Respir Crit Care Med. 2014;190(2):155–64.

    Article  CAS  PubMed  Google Scholar 

  18. Bowler RP, Jacobson S, Cruickshank C, Hughes GJ, Siska C, Ory DS, et al. Plasma sphingolipids associated with chronic obstructive pulmonary disease phenotypes. Am J Respir Crit Care Med. 2015;191(3):275–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Lomas DA, Silverman EK, Edwards LD, Locantore NW, Miller BE, Horstman DH, et al. Serum surfactant protein D is steroid sensitive and associated with exacerbations of COPD. Eur Respir J. 2009;34(1):95–102.

    Article  CAS  PubMed  Google Scholar 

  20. Lomas DA, Silverman EK, Edwards LD, Miller BE, Coxson HO, Tal-Singer R. Evaluation of serum CC-16 as a biomarker for COPD in the ECLIPSE cohort. Thorax. 2008;63(12):1058–63.

    Article  CAS  PubMed  Google Scholar 

  21. Sin DD, Miller BE, Duvoix A, Man SF, Zhang X, Silverman EK, et al. Serum PARC/CCL-18 concentrations and health outcomes in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2011;183(9):1187–92.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Duvoix A, Dickens J, Haq I, Mannino D, Miller B, Tal-Singer R, et al. Blood fibrinogen as a biomarker of chronic obstructive pulmonary disease. Thorax. 2013;68(7):670–6.

    Article  PubMed  Google Scholar 

  23. Yonchuk JG, Silverman EK, Bowler R, Agusti A, Lomas DA, Miller BE, et al. Circulating sRAGE as a biomarker of emphysema and the RAGE Axis in the lung. Am J Respir Crit Care Med. 2015;192(7):785–92.

    Article  CAS  PubMed  Google Scholar 

  24. Cheng DT, Kim DK, Cockayne DA, Belousov A, Bitter H, Cho MH, et al. Systemic soluble receptor for advanced glycation endproducts is a biomarker of emphysema and associated with AGER genetic variants in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2013;188(8):948–57.

    Article  CAS  PubMed  Google Scholar 

  25. Terracciano R, Pelaia G, Preiano M, Savino R. Asthma and COPD proteomics: current approaches and future directions. Proteomics Clin Appl. 2015;9(1–2):203–20.

    Article  CAS  PubMed  Google Scholar 

  26. Wan ES, Qiu W, Baccarelli A, Carey VJ, Bacherman H, Rennard SI, et al. Cigarette smoking behaviors and time since quitting are associated with differential DNA methylation across the human genome. Hum Mol Genet. 2012;21(13):3073–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Qiu W, Baccarelli A, Carey VJ, Boutaoui N, Bacherman H, Klanderman B, et al. Variable DNA methylation is associated with chronic obstructive pulmonary disease and lung function. Am J Respir Crit Care Med. 2012;185(4):373–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Barabasi AL. Network medicine--from obesity to the “diseasome”. N Engl J Med. 2007;357(4):404–7.

    Article  CAS  PubMed  Google Scholar 

  29. Barabasi AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet. 2011;12(1):56–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vidal M, Cusick ME, Barabasi AL. Interactome networks and human disease. Cell. 2011;144(6):986–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jia P, Zheng S, Long J, Zheng W, Zhao Z. dmGWAS: dense module searching for genome-wide association studies in protein-protein interaction networks. Bioinformatics. 2011;27(1):95–102.

    Article  CAS  PubMed  Google Scholar 

  32. McDonald ML, Mattheisen M, Cho M, Liu Y-Y, Harshfield B, Hersh C, et al. Beyond GWAS in COPD: probing the landscape between gene-set associations, genome-wide associations and protein-protein interaction networks. Hum Hered. 2014;78:131–9.

    Article  CAS  PubMed  Google Scholar 

  33. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Glass K, Huttenhower C, Quackenbush J, Yuan GC. Passing messages between biological networks to refine predicted interactions. PLoS One. 2013;8(5):e64832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lao T, Glass K, Qiu W, Polverino F, Gupta K, Morrow J, et al. Haploinsufficiency of hedgehog interacting protein causes increased emphysema induced by cigarette smoke through network rewiring. Genome Med. 2015;7(1):12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Chu JH, Hersh CP, Castaldi PJ, Cho MH, Raby BA, Laird N, et al. Analyzing networks of phenotypes in complex diseases: methodology and applications in COPD. BMC Syst Biol. 2014;8:78.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Silverman EK, Loscalzo J. Network medicine approaches to the genetics of complex diseases. Discov Med. 2012;14(75):143–52.

    PubMed  PubMed Central  Google Scholar 

  38. Jordan MI, Mitchell TM. Machine learning: trends, perspectives, and prospects. Science. 2015;349(6245):255–60.

    Article  CAS  PubMed  Google Scholar 

  39. Castaldi PJ, Dy J, Ross J, Chang Y, Washko GR, Curran-Everett D, et al. Cluster analysis in the COPDGene study identifies subtypes of smokers with distinct patterns of airway disease and emphysema. Thorax. 2014;69(5):415–22.

    Article  PubMed  Google Scholar 

  40. Jiang Z, et al. A chronic obstructive pulmonary disease susceptibility gene, FAM13A, regulates protein stability of b-catenin. Am J Resp Crit Care Med 2016;194:185–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cloonan SM, et al. Mitochondrial iron chelation ameliorates cigarette smoke-induced bronchitis and emphysema in mice. Nature Medicine 2016;22:163–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. D’Armiento J, Dalal SS, Okada Y, Berg RA, Chada K. Collagenase expression in the lungs of transgenic mice causes pulmonary emphysema. Cell. 1992;71(6):955–61.

    Article  PubMed  Google Scholar 

  43. Hautamaki RD, Kobayashi DK, Senior RM, Shapiro SD. Requirement for macrophage elastase for cigarette smoke-induced emphysema in mice. Science. 1997;277:2002–4.

    Article  CAS  PubMed  Google Scholar 

  44. Hersh CP, Demeo DL, Lange C, Litonjua AA, Reilly JJ, Kwiatkowski D, et al. Attempted replication of reported chronic obstructive pulmonary disease candidate gene associations. Am J Respir Cell Mol Biol. 2005;33(1):71–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ansel J, Bottin H, Rodriguez-Beltran C, Damon C, Nagarajan M, Fehrmann S, et al. Cell-to-cell stochastic variation in gene expression is a complex genetic trait. PLoS Genet. 2008;4(4):e1000049.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Lee MJ, Ye AS, Gardino AK, Heijink AM, Sorger PK, MacBeath G, et al. Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks. Cell. 2012;149(4):780–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sorger PK, Allerheiligen SRB, Abernethy DR, Altman RB, Brouwer KLR, Califano A, et al. Quantitative and systems pharmacology in the post-genomic era: new approaches to discovering drugs and understanding therapeutic mechanisms. October 2011. Report No.

    Google Scholar 

  48. Silverman EK, Loscalzo J. Developing new drug treatments in the era of network medicine. Clin Pharmacol Ther. 2013;93(1):26–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks Dawn DeMeo, Craig Hersh, Peter Castaldi, and Michael Cho for helpful comments on this manuscript.

Conflict of Interest Statement In the past 3 years, Edwin K. Silverman received honoraria and consulting fees from Merck, grant support and consulting fees from GlaxoSmithKline, and honoraria from Novartis.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Silverman, E.K. (2017). Big Data and Network Medicine in COPD. In: Lee, SD. (eds) COPD. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47178-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47178-4_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47177-7

  • Online ISBN: 978-3-662-47178-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics