Advertisement

Ceramic Products Produced by FS

  • Rafael M. TrommerEmail author
  • Carlos P. Bergmann
Chapter
Part of the Topics in Mining, Metallurgy and Materials Engineering book series (TMMME)

Abstract

The nanomaterials era has enormously contributed to the development of new materials, and the flame spray (FS) method has arrived as a potential technique for its development. One of the great features of the FS method is the wide range of ceramic commodities produced by this technique, as well the wide range of morphologies available for these nanomaterials. Consequently, several types of application for them are possible. In addition, more and more laboratories and companies around the world have been developed and upgraded different FS apparatus. Recent ceramic materials, which years ago were not imagined to be produced by the FS process, are nowadays obtained in a simple step process. Because the FS is a versatile technique, it allows the production of single and mixed oxides, since black carbon to more complex oxides as hydroxyapatite (HA) and spinels. Thus, this chapter presents numerous examples of ceramic nanomaterials produced in different equipments, either commercial or academic, as well their morphology and main applications. One example is black carbon, which is the first material produced by the FS technique and has a large industrial production rate, and even today, is widely used in different industries and products. Recent nanomaterials, such as Ca10(PO4)6(OH)2, ZnO, TiO2, Al2O3, Y2O3, GeO2, MgO-Al2O3, CoMo/Al2O3, and SnO2, are also describe in this chapter.

Keywords

Black Carbon Silica Nanoparticles Fumed Silica Precursor Solution Zinc Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

FS

Flame spray

FSD

Flame spray deposition

FSP

Flame spray pyrolysis

HA

Hydroxyapatite

HEV

Hybrid electric vehicle

HMDSO

Hexamethyldisiloxane

MRI

Magnetic resonance imaging

NT

Nanotubes

NW

Nanowires

PEC

Photoelectrochemical

SEM

Scanning electronic microscopy

SSF

Stagnation swirl flame

TCO

Transparent conducting oxide

TEM

Transmission electronic microscopy

TEOS

Tetraethylorthosilicate

TEOT

Titanium(IV) ethoxide

TTIP

Titanium(IV) isopropoxide

References

  1. Aromaa M, Keskinen H, Mäkelä JM (2007) The effect of process parameters on the liquid flame spray generated titania nanoparticles. Biomol Eng 24:543–548. doi: 10.1016/j.bioeng.2007.08.004 CrossRefGoogle Scholar
  2. Baker C, Kim W, Sanghera J, Goswami R, Villalobos G, Sadowski B, Aggarwal I (2012) Flame spray synthesis of Lu2O3 nanoparticles. Mater Lett 66:132–134. doi: 10.1016/j.matlet.2011.08.058 CrossRefGoogle Scholar
  3. Benfer S, Knözinger E (1999) Structure, morphology and surface properties of nanostructured ZrO2 particles. J Mater Chem 9:1203–1209CrossRefGoogle Scholar
  4. Buddhiraju VS, Runkana V (2012) Simulation of nanoparticle synthesis in an aerosol flame reactor using a coupled flame dynamics–monodisperse population balance model. J Aerosol Sci 43:1–13. doi: 10.1016/j.jaerosci.2011.08.007 CrossRefGoogle Scholar
  5. Camenzind A, Caseri WR, Pratsinis SE (2010) Flame-made nanoparticles for nanocomposites. Nano Today 5:48–65. doi: 10.1016/j.nantod.2009.12.007 CrossRefGoogle Scholar
  6. Cavalcante PMT, Dondi M, Guarini G, Raimondo M, Baldi G (2009) Colour performance of ceramic nano-pigments. Dyes Pigm 80:226–232CrossRefGoogle Scholar
  7. Chew SY, Patey TJ, Waser O, Ng SH, Büchel R, Tricoli A, Krumeich F, Wang J, Liu HK, Pratsinis SE, Novák P (2009) Thin nanostructured LiMn2O4 films by flame spray deposition and in situ annealing method. J Power Sources 189:449–453. doi: 10.1016/j.jpowsour.2008.12.085 CrossRefGoogle Scholar
  8. Ernst FO, Kammler HK, Roessler A et al (2007) Electrochemically active flame-made nanosized spinels: LiMn2O4, Li4Ti5O12 and LiFe5O8. Mater Chem Phys 101:372–378. doi: 10.1016/j.matchemphys.2006.06.014 CrossRefGoogle Scholar
  9. Guo B, Mukundan M, Yim H (2009) Flame aerosol synthesis of phase-pure monoclinic Y2O3 particles via particle size control. Powder Technol 191:231–234. doi: 10.1016/j.powtec.2008.11.003 CrossRefGoogle Scholar
  10. Heine MC, Mädler L, Jossen R, Pratsinis SE (2006) Direct measurement of entrainment during nanoparticle synthesis in spray flames. Combust Flame 144:809–820. doi: 10.1016/j.combustflame.2005.09.012 CrossRefGoogle Scholar
  11. Høj M, Linde K, Hansen TK et al (2011) Flame spray synthesis of CoMo/Al2O3 hydrotreating catalysts. App Catal A 397:201–208. doi: 10.1016/j.apcata.2011.02.034 CrossRefGoogle Scholar
  12. Hu Y, Ding H, Li C (2011) Preparation of hollow alumina nanospheres via surfactant-assisted flame spray pyrolysis. Particuology 9:528–532. doi: 10.1016/j.partic.2011.06.003 CrossRefGoogle Scholar
  13. Ifeacho P, Wiggers H, Roth P (2005) SnO2/TiO2 mixed oxide particles synthesized in doped premixed H2/O2/Ar flames. Proc Combust Inst 30:2577–2584. doi: 10.1016/j.proci.2004.08.117 CrossRefGoogle Scholar
  14. Jang HD, Chang H, Suh Y, Okuyama K (2006) Synthesis of SiO2 nanoparticles from sprayed droplets of tetraethylorthosilicate by the flame spray pyrolysis. Curr Appl Phys 6S1:e110–e113. doi: 10.1016/j.cap.2006.01.021 CrossRefGoogle Scholar
  15. Johannessen T, Jensen JR, Mosleh M, Johansen J, Quaade U, Livbjerg H (2004) Flame synthesis of nanoparticles applications in catalysis and product/process engineering. Chem Eng Res Design 82(A11):1444–1452CrossRefGoogle Scholar
  16. Kammler HK (2002) Synthesis of oxide nanoparticle with closely controlled characteristics. Dissertation, Swiss Federal Institute of Technology, ZurichGoogle Scholar
  17. Kang YC, Seo DJ, Park SB, Park HD (2002) Direct synthesis of strontium titanate phosphor particles with high luminescence by flame spray pyrolysis. Mater Res Bull 37:263–269CrossRefGoogle Scholar
  18. Kathirvel P, Chandrasekaran J, Manoharan D, Kumar S (2013) Formation and characterization of flame synthesized hexagonal zinc oxide nanorods for gas sensor applications. Ceram Int 39:5321–5325. doi: 10.1016/j.ceramint.2012.12.037 CrossRefGoogle Scholar
  19. Keskinen H, Mäkelä JM, Hellsten S, Aromaa M, Levänen E, Mäntylä T. (2005). Generation of titania nanoparticles by liquid flame spray for photocatalytic applications. Electrochem Soc Proc 2005–09:491–498Google Scholar
  20. Kruefu V, Liewhiran C, Wisitsoraat A, Phanichphant A (2011) Selectivity of flame-spray-made Nb/ZnO thick films towards NO2 gas. Sens Actuators B 156:360–367. doi: 10.1016/j.snb.2011.04.046 CrossRefGoogle Scholar
  21. Kusters KA, Pratsinis SE (1995) Strategies for control of ceramic powder synthesis by gas-to-particle conversion. Powder Technol 82:79–91CrossRefGoogle Scholar
  22. Liewhiran C, Tamaekong N, Wisitsoraat A, Phanichphan S (2012) Highly selective environmental sensors based on flame-spray-made SnO2 nanoparticles. Sens Actuators B 163:51–60. doi: 10.1016/j.snb.2011.12.097 CrossRefGoogle Scholar
  23. Liu M (2013) Coating technology of nuclear fuel kernels: a multiscale view, modern surface engineering treatments. In Aliofkhazraei M (ed) InTech. ISBN: 978-953-51-1149-8. doi: 10.5772/55651. Available from http://www.intechopen.com/books/modern-surface-engineering-treatments/coating-technology-of-nuclear-fuel-kernels-a-multiscale-view
  24. Mekasuwandumrong O, Phothakwanpracha S, Jongsomjit B, Shotipruk A, Panpranot J (2011) Influence of flame conditions on the dispersion of Pd on the flame spray-derived Pd/TiO2 nanoparticles. Powder Technol 210:328–331. doi: 10.1016/j.powtec.2011.03.017 CrossRefGoogle Scholar
  25. Memon NK, Tse SD, Chhowalla M, Kear BH (2013) Role of substrate, temperature, and hydrogen on the flame synthesis of graphene films. Proc Combust Inst 34:2163–2170. doi: 10.1016/j.proci.2012.06.112 CrossRefGoogle Scholar
  26. Moiseev A, Qi F, Deubener J, Weber A (2011) Photocatalytic activity of nanostructured titanium dioxide from diffusion flame synthesis. Chem Eng J 170:308–315. doi: 10.1016/j.cej.2011.03.057 CrossRefGoogle Scholar
  27. Nandiyanto ABD, Okuyama K (2011) Progress in developing spray-drying methods for the production of controlled morphology particles: from the nanometer to submicrometer size ranges. Adv Powder Technol 22:1–19CrossRefGoogle Scholar
  28. Pratsinis SE (1997) Flame aerosol synthesis of ceramic powders. Prog Energy Combust Sci 24:197–219CrossRefGoogle Scholar
  29. Pratsinis SE (2011) Aerosol science and technology: history and reviews. RTI International, USA. doi: 10.3768/rtipress.2011.bk.0003.1109
  30. Pratsinis SE, Vemury S (1996) Particle formation in gases: a review. Powder Technol 88:267–273CrossRefGoogle Scholar
  31. Purwanto A et al (2008) High luminance YAG: Ce nanoparticles fabricated from urea added aqueous precursor by flame process. J Alloys Compd 463:350–357CrossRefGoogle Scholar
  32. Rao PM, Cho IS, Zheng X (2013) Flame synthesis of WO3 nanotubes and nanowires for efficient photoelectrochemical water-splitting. Proc Combust Inst 34:2187–2195. doi: 10.1016/j.proci.2012.06.122 CrossRefGoogle Scholar
  33. Roth P (2007) Particle synthesis in flames. Proc Combust Inst 31:1773–1788. doi: 10.1016/j.proci.2006.08.118 CrossRefGoogle Scholar
  34. Sahu M, Biswas P (2011) Single-step processing of copper-doped titania nanomaterials in a flame aerosol reactor. Nanoscale Res Lett 6:441. doi: 10.1186/1556-276X-6-441 CrossRefGoogle Scholar
  35. Siriwong C, Phanichphant S (2011) Flame-made single phase Zn2TiO4 nanoparticles. Mater Lett 65:2007–2009. doi: 10.1016/j.matlet.2011.03.058 CrossRefGoogle Scholar
  36. Siriwong C, Tamaekong N, Phanichphant S (2012) Characterization of single phase Pt-doped Zn2TiO4 nanoparticles synthesized by flame spray pyrolysis. Mater Lett 68:97–100. doi: 10.1016/j.matlet.2011.10.026 CrossRefGoogle Scholar
  37. Stark WJ, Pratsinis SE (2002) Aerosol flame reactors for manufacture of nanoparticles. Powder Technol 126:103–108CrossRefGoogle Scholar
  38. Strobel R, Pratsinis SE (2007) Flame aerosol synthesis of smart nanostructured materials. J Mater Chem 17:4743–4756. doi: 10.1039/b711652g CrossRefGoogle Scholar
  39. Tok AIY, Boey FYC, Du SW, Wong BK (2006) Flame spray synthesis of ZrO2 nano-particles using liquid precursors. Mater Sci Eng B 130:114–119. doi: 10.1016/j.mseb.2006.02.069 CrossRefGoogle Scholar
  40. Trommer RM, Santos LA, Bergmann CP (2007) Alternative technique for hydroxyapatite coatings. Surf Coatings Technol 201:9587–9593. doi: 10.1016/j.surfcoat.2007.04.028 CrossRefGoogle Scholar
  41. Trommer RM, Santos LA, Bergmann CP (2009) Nanostructured hydroxyapatite powders produced by a flame-based technique. Mater Sci Eng C 29:1770–1775. doi: 10.1016/j.msec.2009.02.006 CrossRefGoogle Scholar
  42. Trommer RM, Alves AK, Bergmann CP (2010a) Synthesis, characterization and photocatalytic property of flame sprayed zinc oxide nanoparticles. J Alloys Compd 491:296–300. doi: 10.1016/j.jallcom.2009.10.147 CrossRefGoogle Scholar
  43. Trommer RM, Topolski DK, Takimi AS, Bergmann CP (2010b) Evaluation of flame-sprayed alumina powders produced using different ethanol/water ratios in the starting solutions. Part Sci Technol 28:247–261. doi: 10.1080/02726351.2010.481587 CrossRefGoogle Scholar
  44. Wegner K, Schimmoeller B, Thiebaut B, Fernandez C, Rao TN (2011) Pilot plants for industrial nanoparticle production by flame spray pyrolysis. Powder Part J 29:251–265CrossRefGoogle Scholar
  45. Yue R, Meng D, Ni Y, Jia Y, Liu G, Yang J, LiuH WuX, Chen Y (2013) One-step flame synthesis of hydrophobic silica nanoparticles. Powder Tech 235:909–913. doi: 10.1016/j.powtec.2012.10.021 CrossRefGoogle Scholar
  46. Zhang Y, Li S, Deng S, Yao Q, Tse SD (2012) Direct synthesis of nanostructured TiO2 films with controlled morphologies by stagnation swirl flames. J Aerosol Sci 44:71–82. doi: 10.1016/j.jaerosci.2011.10.001 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Materials Metrology DivisionINMETRODuque de CaxiasBrazil
  2. 2.Escola de Engenharia Departamento de Materials - LACERUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations