• Rafael M. TrommerEmail author
  • Carlos P. Bergmann
Part of the Topics in Mining, Metallurgy and Materials Engineering book series (TMMME)


One of the most important requisites concerning the FS process is the equipment. All fundamental principles are based on the flame configuration, atomization device, flame temperature, powder collection system, and burner. The wide range of apparatus configurations contribute to the several materials that have been produced by the technique described in this book. As it has a strong influence in the final properties of the product, the description of the different equipments reported in the literature is an important feature. Most of the devices reported in this chapter were built in laboratory facilities, but several companies such as DuPont, Cabot, Degussa, Kemira, Tioxide, Corning Glass, and General Electric have been using their own equipments. The flame spray (FS) equipment can be basically divided in three sub-components: the atomization device, the group of flames, and finally the powder collection system. Each of these devices has its importance in the process of producing powders using the FS method, and all of them have different designs and different sub-components, according to the industry or institution that developed/fabricated the equipment. Thus, in this chapter, the main features of the FS apparatus are discussed, and a special attention was given to the flame device, which is the most important device of the equipment.


Precursor Solution Flame Temperature Premix Flame Aluminum Dope Zinc Oxide Electrostatic Precipitator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.













Flame spray


Flame spray pyrolysis


Fourier transform infrared spectroscopy






Indium–tin oxide


Liquefied petroleum gas


Scanning electron microscopy


Transmission electron microscopy




Titanium (IV) tert-butoxide


  1. Chen Y et al (2013) One-step flame synthesis of hydrophobic silica nanoparticles. Powder Tech 235:909–913. 10.1016/j.powtec.2012.10.021
  2. Aromaa M, Keskinen H, Mäkelä JM (2007) The effect of process parameters on the liquid flame spray generated titania nanoparticles. Biomed Eng 24:543–548. doi: 10.1016/j.bioeng.2007.08.004 Google Scholar
  3. Aruna ST, Mukasyan AS (2008) Combustion synthesis and nanomaterials. Curr Opin Solid State Mater Sci 12:44–50  Google Scholar
  4. Aruna ST, Kini NS, Rajam KS (2009) Solution combustion synthesis of CeO2–CeAlO3 nano-composites by mixture-of-fuels approach. Mater Res Bull 44:728–733. doi: 10.1016/j.materresbull.2008.09.034 CrossRefGoogle Scholar
  5. Baker C, Kim W, Sanghera J et al (2012) Flame spray synthesis of Lu2O3 nanoparticles. Mater Lett 66:132–134. doi: 10.1016/j.matlet.2011.08.058 CrossRefGoogle Scholar
  6. Benfer S, Knözinger E (1999) Structure, morphology and surface properties of nanostructured ZrO2 particles. J Mater Chem 9:1203–1209CrossRefGoogle Scholar
  7. Benvenutti LH (1999) Mapeamento de radicais excitados e cinética de reação para chamas de etanol. Dissertation, Universidade Estadual de CampinasGoogle Scholar
  8. Bremond N, Clanet C, Villermaux E (2007) Atomization of undulating liquid sheets. J Fluid Mech 585:421–456. doi: 10.1017/S0022112007006775
  9. Chew SY, Patey TJ, Waser O, Ng SH, Büchel R, Tricoli A, Krumeich F, Wang J, Liu HK, Pratsinis SE, Novák P (2009) Thin nanostructured LiMn2O4 films by flame spray deposition and in situ annealing method. J Power Sources 189:449–453. doi: 10.1016/j.jpowsour.2008.12.085 CrossRefGoogle Scholar
  10. Cho JS, Kang YC (2008) Nano-sized hydroxyapatite powders prepared by flame spray pyrolysis. J Alloys Compounds 464:282–287CrossRefGoogle Scholar
  11. Edwards JB (1974) Combustion: the formation and emission of trace species. Ann Arbor Science, USAGoogle Scholar
  12. Edwards DA, Dunbar C (2002) Bioengineering of therapeutic aerosols. Ann Rev Biom Eng v:93–107Google Scholar
  13. Ernst FO, Kammler HK, Roessler A et al (2007) Electrochemically active flame-made nanosized spinels: LiMn2O4, Li4Ti5O12 and LiFe5O8. Mater Chem Phys 101:372–378. doi: 10.1016/j.matchemphys.2006.06.014 CrossRefGoogle Scholar
  14. Gaydon AG (1953) Flames: their structure, radiation and temperature. Chapman & Hall, LondonGoogle Scholar
  15. Guo B, Mukundan M, Yim H (2009) Flame aerosol synthesis of phase-pure monoclinic Y2O3 particles via particle size control. Powder Technol 191:231–234. doi: 10.1016/j.powtec.2008.11.003 CrossRefGoogle Scholar
  16. Heine MC, Mädler L, Jossen R, Pratsinis SE (2006) Direct measurement of entrainment during nanoparticle synthesis in spray flames. Comb Flame 144:809–820. doi: 10.1016/j.combustflame.2005.09.012 CrossRefGoogle Scholar
  17. Hickey AJ (1996) Inhalation aerosols—physical and biological basis for therapy. Marcel Dekker, USAGoogle Scholar
  18. Hinds WC (1982) Aerosol technology: properties, behavior, and measurement of airborne particles. Wiley, USAGoogle Scholar
  19. Høj M, Linde K, Hansen TK et al (2011) Flame spray synthesis of CoMo/Al2O3 hydrotreating catalysts. App Catal A: General 397:201–208. doi: 10.1016/j.apcata.2011.02.034
  20. Hu Y, Ding H, Li C (2011) Preparation of hollow alumina nanospheres via surfactant-assisted flame spray pyrolysis. Particuology 9:528–532. doi: 10.1016/j.partic.2011.06.003 CrossRefGoogle Scholar
  21. Jang HD, Chang H, Suh Y, Okuyama K (2006) Synthesis of SiO2 nanoparticles from sprayed droplets of tetraethylorthosilicate by the flame spray pyrolysis. Curr Appl Phys 6S1:e110–e113. doi: 10.1016/j.cap.2006.01.021
  22. Johannessen T, Jensen JR, Mosleh M, Johansen J, Quaade U, Livbjerg H (2004) Flame synthesis of nanoparticles applications in catalysis and product/process engineering. Chem Eng Res Des 82(A11):1444–1452CrossRefGoogle Scholar
  23. Junior DC (2006) Determinação de temperatura de chama por espectroscopia de emissão. Disseration, Universidade Estadual de CampinasGoogle Scholar
  24. Kang YC, Seo DJ, Park SB, Park HD (2002) Direct synthesis of strontium titanate phosphor particles with high luminescence by flame spray pyrolysis. Mater Res Bull 37:263–269CrossRefGoogle Scholar
  25. Karthikeyan J, Berndt CC, Tikkanen J, Wang JY, King AH, Herman H (1997) Nanostruct Mater 8:61–74Google Scholar
  26. Lenka RK, Mahata T, Sinha PK, Tyagi AK (2008) Combustion synthesis of gadolinia-doped ceria using glycine and urea fuels. J Alloy Compd 466:326–329CrossRefGoogle Scholar
  27. Marques CST (1996) Distribuição de espécies luminescentes em chamas explosivas de C2H2/O2. Dissertation, Universidade Estadual de CampinasGoogle Scholar
  28. Mekasuwandumrong O, Phothakwanpracha S, Jongsomjit B, Shotipruk A, Panpranot J (2011) Influence of flame conditions on the dispersion of Pd on the flame spray-derived Pd/TiO2 nanoparticles. Powder Technol 210:328–331. doi: 10.1016/j.powtec.2011.03.017 CrossRefGoogle Scholar
  29. Memon NK, Tse SD, Chhowalla M, Kear BH (2013) Role of substrate, temperature, and hydrogen on the flame synthesis of graphene films. Proc Combust Inst 34:2163–2170. doi: 10.1016/j.proci.2012.06.112 CrossRefGoogle Scholar
  30. Mueller R, Mädler L, Pratsinis SE (2003) Nanoparticle synthesis at high production rates by flame spray pyrolysis. Chem Eng Sci 58:1969–1976CrossRefGoogle Scholar
  31. Mueller R, Kammle HK, Pratsinis SE, Vital A, Beaucage G, Burtscher P (2004) Non-agglomerated dry silica nanoparticles. Powder Tech 140:40–48CrossRefGoogle Scholar
  32. Muiva CM, Sathiaraj TS, Maabong K (2011) Effect of doping concentration on the properties of aluminium doped zinc oxide thin films prepared by spray pyrolysis for transparent electrode applications. Ceram Int 37:555–560. doi: 10.1016/j.ceramint.2010.09.042 CrossRefGoogle Scholar
  33. Nandiyanto ABN, Okuyama K (2011) Progress in developing spray-drying methods for the production of controlled morphology particles: from the nanometer to submicrometer size ranges. Adv Powder Technol 22:1–19. doi: 10.1016/j.apt.2010.09.011 CrossRefGoogle Scholar
  34. Ozturk A, Cetegen BM (2005) Experiments on ceramic formation from liquid precursor spray axially injected into an oxy-acetylene flame. Acta Mater 53:5203–5211. doi: 10.1016/j.actamat.2005.08.001 CrossRefGoogle Scholar
  35. Pratsinis SE (1997) Flame aerosol synthesis of ceramic powders. Prog Energy Combust Sri 24:197–219CrossRefGoogle Scholar
  36. Qin X, Ju YG, Bernhard S, Yao N (2005) Flame synthesis of Y2O3: Eu nanophosphors using ethanol as precursor solvents. J Mater Res v: 2960–2968Google Scholar
  37. Roth P (2007) Particle synthesis in flames. Proc Combust Inst 31:1773–1788. doi: 10.1016/j.proci.2006.08.118 CrossRefGoogle Scholar
  38. Rudin T, Wegner K, Pratsinis SE (2013) Towards carbon-free flame spray synthesis of homogeneous oxide nanoparticles from aqueous solutions. Adv Powder Technol 24:632–642.
  39. Santos LR (2005) Medições de temperatura de chamas de etanol utilizando fluorescência induzida por laser. Disseration, Universidade Estadual de CampinasGoogle Scholar
  40. Sinha A, Nair SR, Sinha PK (2011) Single step synthesis of GdAlO3 powder. J Alloy Compd v:4774–4780Google Scholar
  41. Stark WJ, Pratsinis SE (2002) Aerosol flame reactors for manufacture of nanoparticles. Powder Technol 126:103–108CrossRefGoogle Scholar
  42. Sornek RJ, Dobashi R, Hirano T (2000) Effects of turbulence on dispersion and vaporization of droplets in spray combustion. Procee Comb Inst 28:1055–1062Google Scholar
  43. Strobel R, Pratsinis SE (2007) Flame aerosol synthesis of smart nanostructured materials. J Mater Chem 17:4743–4756. doi: 10.1039/b711652g CrossRefGoogle Scholar
  44. Teoh WY (2007) Flame spray synthesis of catalyst nanoparticles for photocatalytic mineralisation of organics and Fischer—Tropsch synthesis. Doctorade ThesisGoogle Scholar
  45. Trommer RM (2011) Obtenção de óxido de zinco nanoestruturado por aspersão de solução em chama e caracterização de propriedades e da atividade fotocatalítica. Dissertation, Universidade Federal do Rio Grande do SulGoogle Scholar
  46. Trommer RM, Santos LA, Bergmann CP (2007) Alternative technique for hydroxyapatite coatings. Surf Coat Technol 201:9587–9593. doi: 10.1016/j.surfcoat.2007.04.028 CrossRefGoogle Scholar
  47. Trommer RM, Santos LA, Bergmann CP (2009) Nanostructured hydroxyapatite powders produced by a flame-based technique. Mater Sci Eng C 29:1770–1775. doi: 10.1016/j.msec.2009.02.006 CrossRefGoogle Scholar
  48. Trommer RM, Topolski DK, Takimi AS, Bergmann CP (2010) Evaluation of flame-sprayed alumina powders produced using different ethanol/water ratios in the starting solutions. Part Sci Technol 28:247–261. doi: 10.1080/02726351.2010.481587 CrossRefGoogle Scholar
  49. Wegner K, Schimmoeller B, Thiebaut B, Fernandez C, Rao TN (2011) Pilot plants for industrial nanoparticle production by flame spray pyrolysis. Powder Part J 29:251–265CrossRefGoogle Scholar
  50. Widiyastuti W, Balgis R, Iskandar F, Okuyama K (2010) Nanoparticle formation in spray pyrolysis under low-pressure conditions. Chem Eng Sci 65:1846–1854. doi: 10.1016/j.ces.2009.11.026 CrossRefGoogle Scholar
  51. Zhang Y, Li S, Deng S, Yao Q, Tse SD (2012) Direct synthesis of nanostructured TiO2 films with controlled morphologies by stagnation swirl flames. J Aerosol Sci 44:71–82. doi: 10.1016/j.jaerosci.2011.10.001 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Materials Metrology DivisionINMETRODuque de CaxiasBrazil
  2. 2.Escola de Engenharia Departamento de Materials - LACERUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations